**TELEFUNKEN Semiconductors** 

## Timing Processor (LINE, FRAME, SMPS) for TV Sets

### **General Description**

This integrated circuit uses I<sup>2</sup>L bipolar technology and combines analog signal processing with digital processing. Timing signals are obtained from a Voltage-Controlled Oscillator (VCO) operating at 500 kHz by means of a cheap ceramic resonator.

A chain of dividers and appropriate logic functions are producing very accurately defined sampling pulses and the necessary timing signals. This avoids the frequency adjustment normally required with line and frame oscillators.

#### **Features**

- 500 kHz VCO and appropriate logic avoids adjustment of timing pulses
- Identical line and Switch Mode Power Supply (SMPS) frequency avoids visible interference on
- Multistandard capability by automatic 50/60 Hz identification
- Low power dissipation by controlling a frame thyristor (or class D output transistor stage)
- Video identification circuit
- Super sandcastle

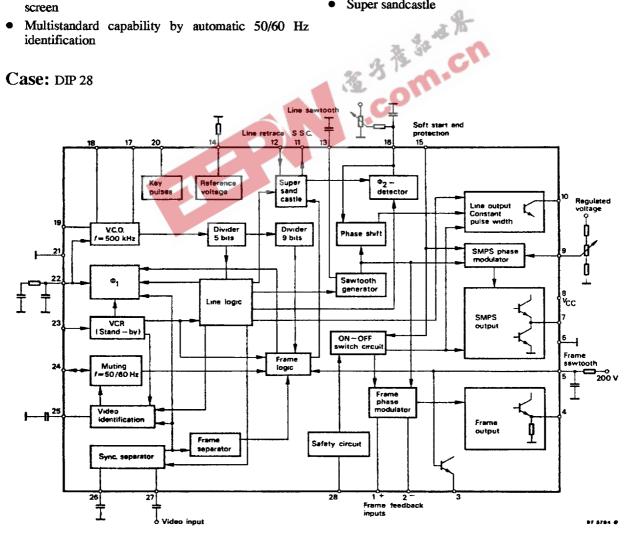



Figure 1. Block diagram

Rev. A1: 28.07.1995

8920096 0014358 DA4 **1** 

1 (9)

## **TEA2029CV**

**TELEFUNKEN Semiconductors** 

### **Absolute Maximum Ratings**

 $T_{amb} = 25$ °C, unless otherwise specified.

| Parameter                                |                  | Symbol                                                            | Value          | Unit |
|------------------------------------------|------------------|-------------------------------------------------------------------|----------------|------|
| Supply voltage                           | Pin 8            | $V_{S}$                                                           | 14             | V    |
| AGC current                              | Pin 20           | I <sub>20</sub>                                                   | 5              | mA   |
| Video identification current             | Pin 24           | I <sub>24</sub>                                                   | 10             | mA   |
| Line retrace current Line output current | Pin 12<br>Pin 10 | $\begin{array}{c c} \pm I_{12} \\ +I_{10} \\ -I_{10} \end{array}$ | 10<br>40<br>10 | mA   |
| Frame sawtooth generator                 | Pin 3            | I <sub>S</sub>                                                    | 20             | mA   |
| Frame output current                     | Pin 4            | I <sub>4</sub>                                                    | 100            | mA   |
| SMPS output current                      | Pin 7            | ± I <sub>7</sub>                                                  | 50             | mA   |
| Safety input current                     | Pin 28           | I <sub>28</sub>                                                   | 5              | mA   |
| Safety input voltage                     | Pin 28           | V <sub>28</sub>                                                   | $V_{CC}$       |      |
| Ambient temperature range                |                  | T <sub>amb</sub>                                                  | 0 to +70       | °C   |
| Storage temperature range                |                  | T <sub>stg</sub>                                                  | -25 to +150    | °C   |

### **Thermal Resistance**

| Parameters       | Symbol     | Value | Unit |
|------------------|------------|-------|------|
| Junction ambient | $R_{thJA}$ | 55    | K/W  |

### **Electrical Characteristics**

 $V_S = V_{CC} = 12 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}, \text{ unless otherwise specified}$ 

| Parameters                                                | Test Conditions /                       | Pins      | Symbol           | Min. | Typ. | Max  | Unit            |
|-----------------------------------------------------------|-----------------------------------------|-----------|------------------|------|------|------|-----------------|
| Supply current                                            | Frame, line and SMI output without load |           | $I_S$            |      | 60   | 80   | mA              |
| Sync. separator                                           |                                         | Pins 26 a | nd 27            |      |      |      |                 |
| Positive video input signal, ac coupled                   | Source impedance<br>≤ 200 Ω             | Pin 27    | V <sub>27</sub>  | 0.2  | 1.8  | 3    | V <sub>pp</sub> |
| Negative clamping current during sync. pulse              |                                         |           | -I <sub>27</sub> | 25   | 40   | 55   | μΑ              |
| Clamping current, continuously                            |                                         |           | I <sub>27</sub>  | 3    | 5    | 9    | μΑ              |
| Slicing level decoupling                                  | Negative current                        | Pin 26    | -I <sub>26</sub> |      | 640  | 1000 | μA              |
| 50 % of sync. amplitude                                   | Positive current                        |           | I <sub>26</sub>  | 12   | 25   | 36   | μΑ              |
| Pulse for keyed AGC                                       |                                         | Pin 20    |                  | ···  |      |      | ·               |
| Output current                                            |                                         |           | $\overline{I_0}$ |      |      | 5    | mA              |
| Output separation voltage                                 | $I_0 = 5 \text{ mA}$                    |           | $V_0$            |      |      | 0.4  | V               |
| Delay time from the key pul-<br>middle of the sync. pulse | se leading edge to the                  |           | t <sub>d1</sub>  |      | 3.4  |      | μs              |
| Delay time from the middle pulse trailing                 | of the sync. pulse to th                | e key     | t <sub>d2</sub>  |      | 4.8  |      | μs              |

2 (9)

: 🖿 8920096 0014359 Tlo 🖿

Rev. A1: 28.07.1995

#### **TELEFUNKEN Semiconductors**

## **TEA2029CV**

| Parameters                                     | Test Conditions                                  |                  |                     | Min.     | Тур         | Max. | Unit     |
|------------------------------------------------|--------------------------------------------------|------------------|---------------------|----------|-------------|------|----------|
| Voltage control oscillator, V                  |                                                  | Pin 17, 1        |                     | ·        |             |      |          |
| $V_S = V_{CC} = 11 \text{ V to } 13 \text{ V}$ | Ceramic resonator t                              | ype: CSB         | 503 B               |          |             |      |          |
| Operating voltage                              |                                                  | Pin 8            | $V_{S}$             | 5        |             | 13.2 | V        |
| Frequency control range                        | Low-end                                          |                  | $f_{low}$           |          | 15.3        |      | kHz      |
| after H. divider                               | High-end                                         |                  | $\mathbf{f_{high}}$ |          | 16.1        |      | <u> </u> |
| Control current                                |                                                  | Pin 22           | $\pm I_{22}$        |          |             | 10   | μA       |
| Phase detector $\emptyset_1$                   |                                                  | Pin 22           |                     |          |             |      |          |
| Output current                                 | Low loop gain                                    |                  | ± I <sub>0</sub>    | 0.35     | 0.5         | 0.65 | mA       |
|                                                | High loop gain                                   |                  |                     | 1        | 1.5         | 2    |          |
| Ratio of charging and                          |                                                  |                  | $I_{ch}/I_{dis}$    |          | 1           |      |          |
| discharging current                            |                                                  |                  |                     |          |             |      |          |
| Transfer gain                                  | Low loop gain                                    |                  | $G_{TL}$            |          | 1.2         |      | kHz/μs   |
|                                                | High loop gain                                   |                  | $G_{TH}$            |          | 3.6         |      |          |
| Window pulse width                             |                                                  |                  | tØ1                 |          | 10          |      | μs       |
| (only in low loop gain, video                  |                                                  |                  |                     |          |             |      |          |
| Delay time between middle                      | of key pulse and $\emptyset_1$ c                 | ompar-           | t <sub>d</sub>      |          | <b>3</b> _0 |      | μs       |
| ison edge                                      |                                                  |                  |                     | 1        | 10          |      | <u> </u> |
| VCR and STAND-BY swit                          |                                                  | Pin 23           |                     | 3. 34    |             |      |          |
| Threshold voltage VCR (VC                      | R switch is in ON po                             | osition          | $V_{\mathrm{T}}$    | 1.6      | 2.1         | 2.6  | V        |
| below this value)                              |                                                  |                  | 92 4)               | - 401    |             |      |          |
| Threshold voltage STAND-I                      |                                                  |                  | $V_{T}$             | 3.2      | 4           | 4.8  | V        |
| (STAND-BY switch is in Ol                      | N position above this                            | level)           | <u> </u>            |          |             |      |          |
| Input current                                  |                                                  |                  | $-I_1$              | 0.030    |             | 1    | mA       |
| Video identification, see fig                  | gure 2                                           | Pins 24          |                     |          |             |      |          |
| Input current                                  |                                                  | Pin 24           | $I_{\mathrm{I}}$    |          |             | 10   | mA       |
| Output saturation voltage                      | $I_I = 5 \text{ mA}$ , no video                  | o sign <b>al</b> | $V_{Osat}$          |          |             | 0.6  | V        |
| Output voltage                                 | f = 60  Hz,                                      | Pin 24           | $V_0$               | 5.5      | 6           | 7.5  | V        |
|                                                | $I_{i(Video)} = 2.5 \text{ mA}$                  |                  |                     |          |             |      |          |
| Input current                                  | f = 50 Hz                                        | Pin 24           | $\mathbf{I_{I}}$    |          |             | 10   | μA       |
| Output current,                                |                                                  | Pin 25           | $I_{ch}$            | 0.5      | 0.75        | 1    | mA       |
| charging the capacitor                         |                                                  |                  |                     |          |             |      |          |
| Ratio between the charg-                       |                                                  | Pin 25           | $I_{ch}/I_{dis}$    | 1.7      |             | 4.0  |          |
| ing and discharging current                    |                                                  |                  |                     |          |             |      |          |
| Identification sampling                        |                                                  | Pin 25           | t <sub>25</sub>     | 1.3      |             | 2.2  | μs       |
| time                                           |                                                  |                  |                     |          |             |      |          |
| Threshold voltage                              |                                                  | Pin 25           |                     |          |             |      |          |
|                                                | lower to higher val                              |                  | $V_{\mathrm{T}}$    | 4        | 4.5         | 5    | V        |
|                                                | (low means no vide                               |                  |                     |          |             |      |          |
| Hysteresis voltage                             | <u> </u>                                         | Pin 25           | V <sub>hyst</sub>   | <u> </u> | 350         |      | mV       |
| H. ramp generator, see fig                     | <del>,                                    </del> | Pin 13           |                     |          | -           |      | <b>,</b> |
| Saw-tooth amplitude                            | peak to peak                                     | <del></del>      | v                   | 3        | 3.5         | 4    | V        |
| synchronized state                             |                                                  |                  |                     | ļ        |             |      |          |
| Charge current                                 |                                                  |                  | $I_{ch}$            | 185      | 200         | 215  | μA       |
| Saw-tooth base voltage                         |                                                  |                  | $V_{min}$           |          |             | 0.5  | V        |
| Discharging time                               |                                                  |                  | t <sub>dis</sub>    |          |             | 4    | μs       |
| Delay time between $\emptyset_2$ com           | paring edge and lead                             | ing              | t <sub>d</sub>      |          | 1.95        |      | μs       |
| edge of discharging pulse                      |                                                  |                  |                     | J        |             |      | ,        |

Rev. A1: 28.07.1995

: 🖿 8920096 0014360 732 🖿

3 (9)

## **TEA2029CV**

**TELEFUNKEN Semiconductors** 

| Super sandcastle, SSC   Output current   Output current   Output voltage levels; I11 = 5 mA   Burst key pulse   Horizontal blank pulse   Frame blank pulse   I11 = 5 mA   Frame blank pulse   I11 = 5 mA   I11 = 5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Parameters                                       | Test Conditions / Pins                          | Symbol                                           | Min.         | Typ. | Max.     | Unit                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------|------|----------|--------------------------------------------------|
| Output voltage levels: Burst key pulse Burst key pulse Horizontal blank pulse Frame blank pulse Delay time between middle of sync. pulse (pin 27) and leading edge of burst key pulse Duration of burst key pulse Duration of burst key pulse Delay time  between SSC cutting level at pin 12 and line blank pulse Frame retrace blanking duration  Line retrace input First threshold for blanking Second threshold for $\theta_2$ V <sub>12</sub> = 12 V V <sub>12</sub> = 5 V V <sub>12</sub> = 5 V V <sub>12</sub> = 1 V Phase detector $\theta_2$ Charging current  Ratio of charging and discharging current Delay time between the comparing edges of $\theta_1$ and $\theta_2$ for (VCO) = 500 kHz Imput current of internal error amplifier for $\theta_2$ phase shift Time difference between $\theta_2$ comparing edge and middle of line retrace (without external phase tuning circuit) Horizontal output (Open collector). Pin 10 Output saturation voltage V <sub>1</sub> = 20 mA V <sub>2</sub> V <sub>1</sub> = 24 V <sub>2</sub> 26 V <sub>3</sub> 28 V <sub>4</sub> V <sub>5</sub> 27 V <sub>5</sub> 28 V <sub>5</sub> 28 V <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Super sandcastle, SSC                            | Pin 11                                          |                                                  |              |      |          | 10.00                                            |
| Output voltage levels;   I11 = 5 mA   VBurst   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Output current                                   |                                                 | I <sub>11</sub>                                  | -10          |      | + 10     | mA                                               |
| Horizontal blank pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Output voltage levels;                           | $I_{11} = 5 \text{ mA}$                         |                                                  |              |      |          | 1                                                |
| Horizontal blank pulse   I <sub>1</sub> = 5mA   I <sub>2</sub> = 5mA   I <sub>3</sub> = 5mA   I <sub>4</sub> = 5mA   I <sub></sub> |                                                  |                                                 | $V_{\mathrm{Burst}}$                             |              |      |          | v                                                |
| Frame out of function   Comparing edges of burst key pulse   Duration of burst key pulse   Delay time   between SSC cutting   level at pin 12 and line   blank pulse   Duration of burst key pulse   Delay time   between SSC cutting   level at pin 12 and line   blank pulse   Duration of burst key pulse   Delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                 |                                                  | 4            | 4.5  | 5        |                                                  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Frame blank pulse                                |                                                 | $V_{VB}$                                         | 2            | 2.5  | 3        | V                                                |
| Duration of burst key pulse   Delay time   Delay time bunk pulse   Delay time bun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                 | t <sub>d</sub>                                   | 2.3          |      | 3        | μs                                               |
| Delay time   between SSC cutting level at pin 12 and line blank pulse   24   lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | 186                                             |                                                  | 2.7          |      | <i>E</i> |                                                  |
| level at pin 12 and line blank pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | hoterion SSC outting                            |                                                  | 3.7          | 4    |          | <del>                                     </del> |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Delay time                                       | level at pin 12 and line                        | <sup>L</sup> d                                   |              |      | 0.5      | μs                                               |
| First threshold for blanking Second threshold for $\emptyset_2$ V <sub>02</sub> 11 1.3 2.3 V Input currents: $V_{12} = 12 \text{ V}$ $V_{02} = -1$ 1.3 2.3 V Input currents: $V_{12} = 5 \text{ V}$ $V_{12} = 5 \text{ V}$ $V_{12} = 5 \text{ V}$ $V_{12} = 0 \text{ V}$ $V_{12} = 1 \text{ V}$ $V_{13} = 1 \text{ V}$ $V_{14} = 1 \text{ V}$ $V_{14} = 1 \text{ V}$ $V_{15} = 1 \text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frame retrace blanking duration                  |                                                 |                                                  |              | 24   |          | lines                                            |
| First threshold for blanking Second threshold for $\emptyset_2$ V <sub>02</sub> 11 1.3 2.3 V Input currents: $V_{12} = 12 \text{ V}$ $V_{02} = -1$ 1.3 2.3 V Input currents: $V_{12} = 5 \text{ V}$ $V_{12} = 5 \text{ V}$ $V_{12} = 5 \text{ V}$ $V_{12} = 0 \text{ V}$ $V_{12} = 1 \text{ V}$ $V_{13} = 1 \text{ V}$ $V_{14} = 1 \text{ V}$ $V_{14} = 1 \text{ V}$ $V_{15} = 1 \text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Line retrace input                               | Pin 12                                          | ·                                                | •            |      |          | ·                                                |
| Second threshold for $\emptyset_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                 | V <sub>h</sub>                                   | 11           | 3 15 | 12       | V                                                |
| Input currents: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                                 |                                                  | -1 %         | 1.3  |          |                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | V <sub>12</sub> =12 V                           |                                                  | 4.19         |      |          | <del> </del>                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                |                                                 | 36                                               | 25           |      |          |                                                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                 | 1,38                                             |              | -50  |          |                                                  |
| Phase detector $\theta 2$ ,       Pin 16         Charging current $I_{ch}$ $0.4$ $0.6$ $0.8$ mA         Ratio of charging and discharging current $I_{ch}/I_{dis}$ 1           Delay time between the comparing edges of $\theta_1$ and $\theta_2$ for $(VCO) = 500 \text{ kHz}$ $I_{ch}/I_{dis}$ 1.5       2       2.8       μs         Input current of internal error amplifier for $\theta_2$ phase shift $I_{16}$ 3       μA         Time difference between $\theta_2$ comparing edge and middle of line retrace (without external phase tuning circuit) $\Delta t$ 0       μs         Horizontal output (Open collector).       Pin 10 $\Delta t$ 0       μs         Output saturation voltage $I_0 = 20 \text{ mA}$ $V_0$ $\Delta t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | $V_{12} = 1 V$                                  |                                                  | -2           | -1   |          | mA                                               |
| Charging current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Operating input voltage                          |                                                 | -V <sub>12</sub>                                 |              |      | 1        | V                                                |
| Ratio of charging and discharging current  Delay time between the comparing edges of $\emptyset_1$ and $\emptyset_2$ td 1.5 2 2.8 $\mu$ s $f_0$ (VCO) = 500 kHz  Input current of internal error amplifier for $\emptyset_2$ phase shift  Time difference between $\emptyset_2$ comparing edge and middle of line retrace (without external phase tuning circuit)  Horizontal output (Open collector), Pin 10  Output saturation voltage $I_0 = 20 \text{ mA}$ $V_0$ 1 V  Output current $I_0$ 40 mA  Output pulse duration $f_0 = 500 \text{ kHz}$ $f_0 = 20 \text{ mA}$ $f_0$ $f_0 = 20 \text{ mA}$ $f_0 = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phase detector Ø2,                               | Pin 16                                          |                                                  |              |      |          |                                                  |
| discharging current  Delay time between the comparing edges of $\emptyset_1$ and $\emptyset_2$ $f_0$ (VCO) = 500 kHz  Input current of internal error amplifier for $\emptyset_2$ phase shift  Time difference between $\emptyset_2$ comparing edge and middle of line retrace (without external phase tuning circuit)  Horizontal output (Open collector), Pin 10  Output saturation voltage $I_0 = 20 \text{ mA}$ $V_0$ $I_0$ $I_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                 | I <sub>ch</sub>                                  | 0.4          | 0.6  | 0.8      | mA                                               |
| $ f_{0} (VCO) = 500 \text{ kHz} $ Input current of internal error amplifier for $\emptyset_{2}$ phase shift  Time difference between $\emptyset_{2}$ comparing edge and middle of line retrace (without external phase tuning circuit)  Horizontal output (Open collector), Pin 10  Output saturation voltage $I_{0} = 20 \text{ mA}$ $V_{0}$ $I$ $V$ Output current $I_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ratio of charging and discharging current        |                                                 | I <sub>ch</sub> /I <sub>dis</sub>                |              | 1    |          |                                                  |
| shift  Time difference between $\emptyset_2$ comparing edge and middle of line retrace (without external phase tuning circuit)  Horizontal output (Open collector), Pin 10  Output saturation voltage $I_0 = 20 \text{ mA}$ $V_0$ $I_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Delay time between the com $f_o$ (VCO) = 500 kHz | paring edges of $\emptyset_1$ and $\emptyset_2$ | t <sub>d</sub>                                   | 1.5          | 2    | 2.8      | μs                                               |
| of line retrace (without external phase tuning circuit)  Horizontal output (Open collector), Pin 10  Output saturation voltage $I_0 = 20 \text{ mA}$ $V_0$ $I_0$ $V_0$ $I_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input current of internal erroshift              | r amplifier for $\emptyset_2$ phase             | I <sub>16</sub>                                  |              |      | 3        | μА                                               |
| of line retrace (without external phase tuning circuit)  Horizontal output (Open collector), Pin 10  Output saturation voltage $I_0 = 20 \text{ mA}$ $V_0$ $I_0$ $V_0$ $I_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time difference between $\emptyset_2$            | comparing edge and middle                       | Δt                                               |              | 0    |          | US                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                 |                                                  |              |      |          | μο                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Horizontal output (Open co                       | ollector), Pin 10                               | <u> </u>                                         |              |      |          | <del></del>                                      |
| Output pulse duration $f_0 = 500 \text{ kHz}$ $t_p$ 24 26 28 $\mu s$ $\theta_2$ phase range without external phase shift $t_0$ 14 16 19 $\mu s$ Frame logic  Free running period video identification = 0 N 315 lines identification = 0 N 347 361 lines 50 Hz window N 309 315 lines 60 Hz window N 247 277 lines VCR mode window N 247 361 lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Output saturation voltage                        | Y                                               | V <sub>0</sub>                                   |              |      | 1        | V                                                |
| $ θ_2 $ phase range without external phase shift $ t_0 $ 14 16 19 $ μs $ Frame logic  Free running period video identification = 0  Search window N 247 361 lines 50 Hz window N 309 315 lines 60 Hz window N 247 277 lines VCR mode window N 247 361 lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Output current                                   |                                                 | I <sub>0</sub>                                   |              |      | 40       | mA                                               |
| shift           Frame logic           Free running period video identification = 0         N         315         lines           Search window         N         247         361         lines           50 Hz window         N         309         315         lines           60 Hz window         N         247         277         lines           VCR mode window         N         247         361         lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Output pulse duration                            | $f_0 = 500 \text{ kHz}$                         | t <sub>p</sub>                                   | 24           | 26   | 28       | μs                                               |
| Free running period video identification = 0         N         315         lines           Search window         N         247         361         lines           50 Hz window         N         309         315         lines           60 Hz window         N         247         277         lines           VCR mode window         N         247         361         lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\emptyset_2$ phase range                        |                                                 | tø                                               | 14           | 16   | 19       | μs                                               |
| Free running period video identification = 0         N         315         lines           Search window         N         247         361         lines           50 Hz window         N         309         315         lines           60 Hz window         N         247         277         lines           VCR mode window         N         247         361         lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Frame logic                                      |                                                 |                                                  | ·            | l    |          | 1                                                |
| 50 Hz window         N         309         315         lines           60 Hz window         N         247         277         lines           VCR mode window         N         247         361         lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Free running period video identification = 0     |                                                 | N                                                |              | 315  |          | lines                                            |
| 50 Hz window         N         309         315         lines           60 Hz window         N         247         277         lines           VCR mode window         N         247         361         lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Search window                                    |                                                 | N                                                | 247          |      | 361      | lines                                            |
| 60 Hz window         N         247         277         lines           VCR mode window         N         247         361         lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 Hz window                                     |                                                 | <del></del>                                      |              |      |          |                                                  |
| VCR mode window N 247 361 lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 Hz window                                     |                                                 | <del></del>                                      | <del> </del> |      |          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VCR mode window                                  |                                                 | <del>                                     </del> | <del> </del> |      |          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frame saw-tooth generator                        | *                                               | Pin 5                                            | <u>* l</u>   | 1    |          |                                                  |

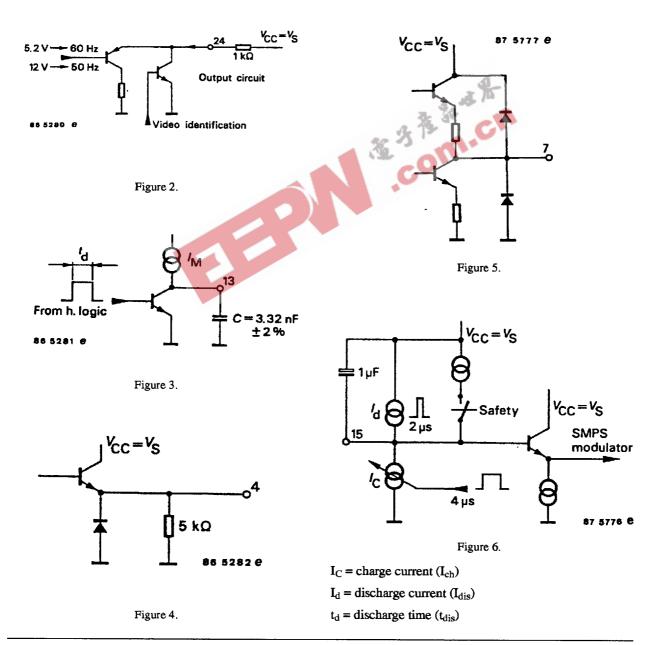
4 (9) Rev. A1: 28.07.1995

### **TELEFUNKEN Semiconductors**

## **TEA2029CV**

| Parameters                                  | Test Conditions / Pin                                                                                                                    | s Symbol                           | Min.  | Тур                          | Max.     | Unit |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|------------------------------|----------|------|
| Saw-tooth amplitude                         | peak to peak                                                                                                                             | v                                  | 2     | 3                            | 4        | V    |
| 60 Hz internal current                      |                                                                                                                                          | $\mathbf{I_0}$                     | 12    | 14                           | 16       | μΑ   |
| generator                                   |                                                                                                                                          |                                    |       |                              |          |      |
| Discharge time                              | $C = 0.47 \mu F, \Delta V_C = 4 V$                                                                                                       |                                    |       |                              | 70       | μs   |
| Delay time                                  | between beginning of di<br>charging and leading ed-<br>of the first main equaliz<br>ing pulse which appears<br>during internal sync. pul | ge<br>-                            |       | 5                            |          | μs   |
| Saw tooth base voltage                      | $I_3 = 0.$ to $10 \text{ mA}$ Pin                                                                                                        | $V_{\min}$                         | 1     | 1.26                         | 1.4      | V    |
| Frame feed back inputs                      | Pin                                                                                                                                      | s 1 and 2                          |       |                              |          |      |
| Input current                               |                                                                                                                                          | I <sub>1,2</sub>                   |       |                              | 10       | μΑ   |
| Common mode range                           |                                                                                                                                          | CMR                                | 2     |                              | 10       | V    |
| Frame output, see figure 4                  | Pin                                                                                                                                      | 4                                  |       |                              |          |      |
| Operating output current                    |                                                                                                                                          | -I <sub>0</sub>                    |       | 4                            | 80       | mA   |
| Limit value                                 |                                                                                                                                          | -I <sub>0M</sub>                   | i ai  | , JD                         | 100      | mA   |
| Max. "ON" time                              |                                                                                                                                          | t <sub>on</sub>                    | 3c 34 | 40                           |          | μs   |
| Output phase range                          |                                                                                                                                          | tø                                 | 0     | 0                            | tonmax   | μs   |
| Negative over current                       | limit value                                                                                                                              | $I_{NO}$                           | 400   | 10                           |          | mA   |
| Output voltage                              | $I_4 = -80 \text{ mA}$                                                                                                                   | V <sub>O</sub>                     | 10    |                              |          | V    |
| Switch mode power supply                    | , SMPS                                                                                                                                   |                                    |       |                              |          |      |
| Input current                               | Pin                                                                                                                                      | 9 I <sub>I</sub>                   |       |                              | 10       | μA   |
| Internal reference voltage                  |                                                                                                                                          | V <sub>ref</sub>                   | 1.2   | 1.26                         | 1.35     | V    |
| SMPS Output, see figure 5                   | Pin                                                                                                                                      | 7                                  |       |                              |          |      |
| Output current limit value                  |                                                                                                                                          | $I_0$                              | -50   |                              | 50       | mA   |
| Output voltage                              | $I_0 = -20 \text{ mA}$<br>$I_0 = +20 \text{ mA}$                                                                                         | V <sub>0</sub>                     | 10    |                              | 2        | V    |
| t <sub>on</sub> time                        |                                                                                                                                          | tonmax                             | 27    | 28                           | 29       | μs   |
| Position of trailing edge of SMPS pulse     |                                                                                                                                          |                                    |       | before midd<br>I sync. pulse |          |      |
| Negative over current limit v               | alue                                                                                                                                     | $I_{NO}$                           |       |                              | 50       | mA   |
| Safety input,                               | Pin                                                                                                                                      |                                    |       |                              |          |      |
| Threshold voltage                           |                                                                                                                                          | $V_{\rm T}$                        | 1.15  | 1.26                         | 1.37     | V    |
| Input current                               | $V_T = V_{ref}$                                                                                                                          | I <sub>I</sub>                     |       |                              | 3        | μA   |
| Input voltage                               |                                                                                                                                          | V <sub>28max</sub>                 |       |                              | $V_{CC}$ |      |
| Soft starting input and SMI                 | PS - T <sub>"ON"</sub> limitation (see                                                                                                   |                                    | 5     | -                            |          |      |
| Charging current                            | $t = 4 \mu s$                                                                                                                            | I <sub>ch</sub>                    | 70    |                              | 130      | μΑ   |
| Ratio of charging and discharging current   |                                                                                                                                          | I <sub>ch</sub> / I <sub>dis</sub> |       | 1                            |          |      |
| Charging time                               |                                                                                                                                          | t <sub>ch</sub>                    |       | 4                            |          | μs   |
| Ratio of charging and dis-<br>charging time |                                                                                                                                          | t <sub>ch</sub> /t <sub>dis</sub>  |       | 2                            |          |      |

Rev. A1: 28.07.1995


8920096 0014362 505 🖿

5 (9)

## **TEA2029CV**

#### TELEFUNKEN Semiconductors

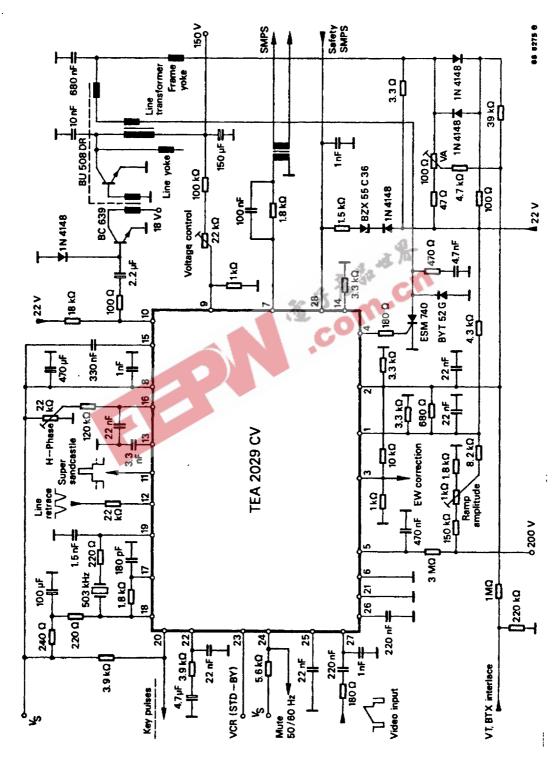
| Parameters                                  | Test Conditions / Pins           | Symbol           | Min.                        | Typ. | Max.                       | Umit |
|---------------------------------------------|----------------------------------|------------------|-----------------------------|------|----------------------------|------|
| Switch-ON, Switch-OFF p                     |                                  |                  |                             |      |                            |      |
| SMPS                                        | frame and line $V_{CC}$ starting | Vs               | 5.25 +<br>V <sub>hyst</sub> |      | 6.5 +<br>V <sub>hyst</sub> | V    |
|                                             | V <sub>CC</sub> stopping         |                  | 5.25                        |      | 6.25                       |      |
| Hysteresis between switch on- and off level |                                  | $V_{hyst}$       |                             | 500  |                            | mV   |
| Voltage reference                           | Pin 14                           | V <sub>ref</sub> | 1.2                         | 1.26 | 1.35                       | V    |

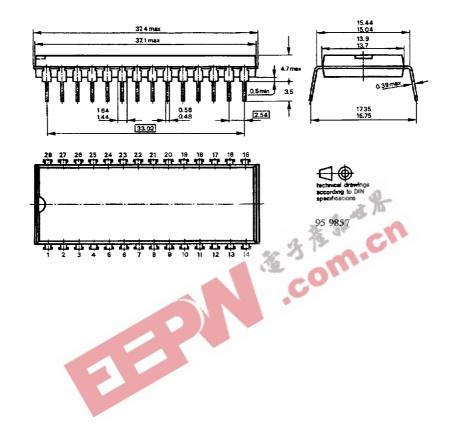


Rev. A1: 28.07.1995

### **TELEFUNKEN Semiconductors**

### **Application**





Figure 7.

## **TEA2029CV**

**TELEFUNKEN Semiconductors** 

### **Dimension in mm**

Package: DIP 28

