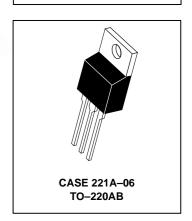
Complementary Silicon Plastic Power Transistors

... designed for use in general purpose amplifier and switching applications. Compact TO-220 AB package.

MAXIMUM RATINGS

Rating	Symbol	TIP29B TIP30B	TIP29C TIP30C	Unit
Collector–Emitter Voltage	VCEO	80	100	Vdc
Collector-Base Voltage	VCB	80	100	Vdc
Emitter–Base Voltage	VEB	5.	Vdc	
Collector Current — Continuous Peak	IC	1. 3.	Adc	
Base Current	ΙB	0.	Adc	
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	3 0.:	Watts W/°C	
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2. 0.0	Watts W/°C	
Unclamped Inductive Load Energy (See Note 3)	E	3	2-60	mJ
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to	+150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _θ JA	62.5	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	4.167	°C/W

TIP29B

TIP29C PNP TIP30B

TIP30C

1 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
80-100 VOLTS
30 WATTS

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (1) (I _C = 30 mAdc, I _B = 0)	TIP29B, TIP30B TIP29C, TIP30C	VCEO(sus)	80 100	_ _	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)		ICEO	_	0.3	mAdc
Collector Cutoff Current (VCE = 80 Vdc, VEB = 0) (VCE = 100 Vdc, VEB = 0)	TIP29B, TIP30B TIP29C, TIP30C	ICES		200 200	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC =	0)	I _{EBO}	_	1.0	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain ($I_C = 0.2$ Adc, $V_{CE} = 4.0$ ($I_C = 1.0$ Adc, $V_{CE} = 4.0$		hFE	40 15	— 75	_
Collector–Emitter Saturation Voltage (I _C = 1	.0 Adc, I _B = 125 mAdc)	VCE(sat)	_	0.7	Vdc
Base–Emitter On Voltage (I _C = 1.0 Adc, V _C	E = 4.0 Vdc)	V _{BE(on)}	_	1.3	Vdc
DYNAMIC CHARACTERISTICS					
Current–Gain — Bandwidth Product (2) (I _C = 200 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.	0 MHz)	fΤ	3.0	_	MHz
Small-Signal Current Gain (I _C = 0.2 Adc, V ₀	CE = 10 Vdc, f = 1.0 kHz)	h _{fe}	20	_	_

- (1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
- (2) $f_T = |h_{fe}| \cdot f_{test}$.
- (3) This rating based on testing with $L_C = 20$ mH, $R_{BE} = 100 \Omega$, $V_{CC} = 10$ V, $I_C = 1.8$ A, P.R.F = 10 Hz.

REV 1

TIP29B TIP29C TIP30B TIP30C

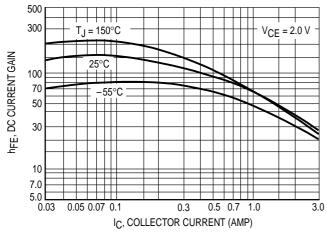


Figure 1. DC Current Gain

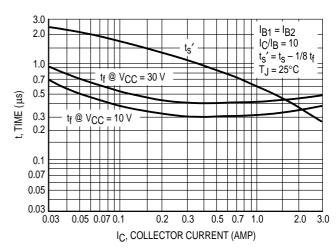


Figure 2. Turn-Off Time

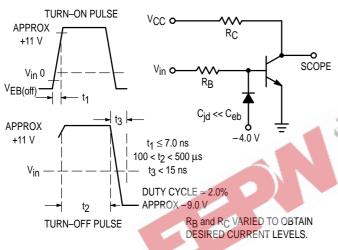


Figure 3. Switching Time Equivalent Circuit

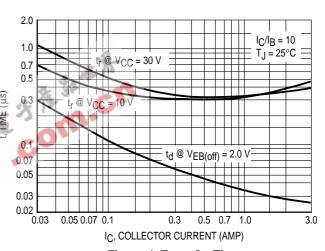
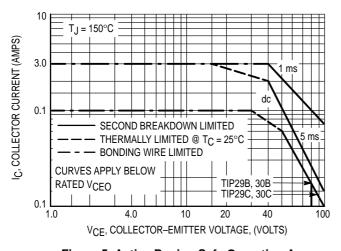
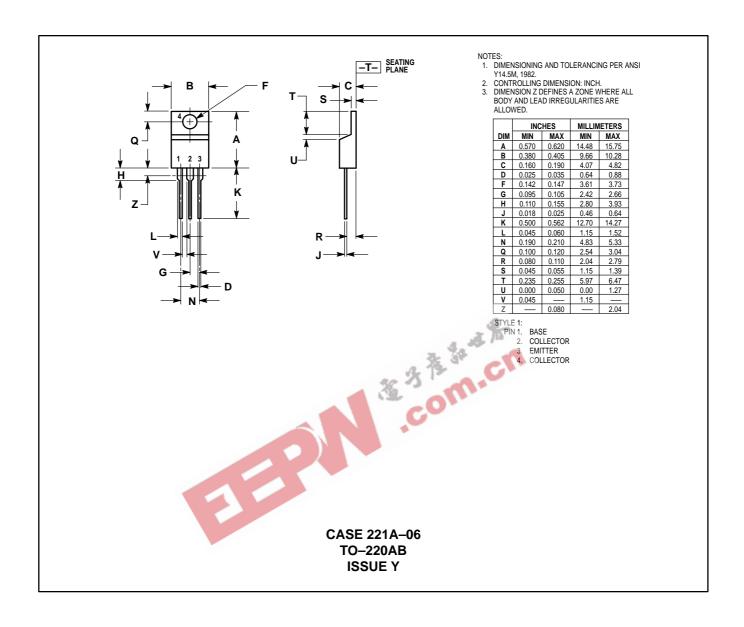


Figure 4. Turn-On Time




Figure 5. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\text{C}} - V_{\text{CE}}$ operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

TIP29B TIP29C TIP30B TIP30C

PACKAGE DIMENSIONS

TIP29B TIP29C TIP30B TIP30C

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

