

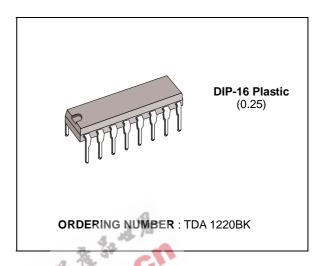
AM-FM QUALITY RADIO

The TDA1220B is a monolithic integrated circuit in a 16-lead dual in-line package.

It is intended for quality receivers produced in large quantities.

The functions incorporated are:

AM SECTION


- Preamplifier and double balanced mixer
- One pin local oscillator
- IF amplifier with internal AGC
- Detector and audio preamplifier

FM SECTION

- IF amplifier and limiter
- Quadrature detector
- Audio preamplifier

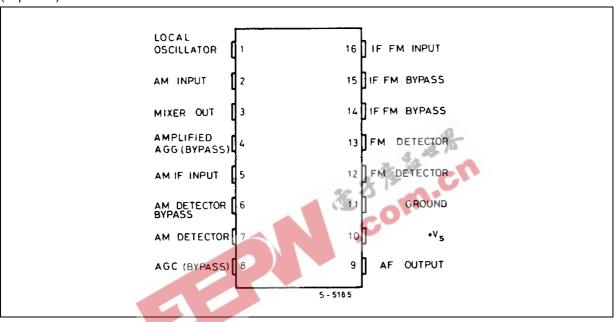
The TDA1220B is suitable up to 30MHz AM and for FM bands (including 450KHz narrow band) and features:

- Very constant characteristics (3V to 16V)
- High sensitivity and low noise
- Very low tweet

- Sensitivity regulation facility (*)
- High recovered audio signal suited for stereo decoders and radio recorders
- Very simple DC switching of AM-FM
- Low current drain
- AFC facility

(*) Maximum AM sensitivity can be reduced by means of a resistor (5 to 12K Ω) between pin 4 and ground.

BLOCK DIAGRAM


March 1993 1/18

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply voltage	16	V
Ptot	Total power dissipation at T _{amb} < 110°C	400	mW
T _{op}	Operating temperature	-20 to 85	°C
T _{stg} , T _j	Storage and junction temperature	-55 to 150	°C

PIN CONNECTION

(Top view)

THERMAL DATA

Symbol	Parameter		Unit
R _{th-j-amb}	Thermal resistance junction-ambient max	100	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \, ^{\circ}C$, $V_{s} = 9V$ unless otherwise specified, refer to test circuit)

Symbol	Parameter	Test conditi	ons	Min.	Тур.	Max.	Unit
Vs	Supply voltage			3		16	V
ld	Drain current	FM			10	15	mA
		AM			14	20	mA
AM SECTI	ON ($f_0 = 1 \text{ MHz}$; $f_m = \text{KHz}$)						
V_{i}	Input sensitivity	S/N = 26 dB	m = 0.3		12	25	μV
S/N		$V_i = 10 \text{ mV}$	m = 0.3	45	52		dB
V_{i}	AGC range	$\Delta V_{out} = 10 \text{ dB}$	m = 0.8	94	100		dB
Vo	Recovered audio signal (pin 9)	$V_i = 1 \text{ mV}$	m = 0.3	80	130	200	mV
d	Distortion	V _i = 1 mV	m = 0.3		0.4	1	%
		V = 1 111V	m = 0.8		1.2		%
Vн	Max input signal handling capability	m = 0.8	d < 10%	1			V
R_{i}	Input resistance between pins 2 and 4	m = 0	26	40.45	7.5		ΚΩ
Ci	Input capacitance between pins 2 and 4	m = 0	* 3	3	18		pF
Ro	Output resistance (pin 9)		1	4.5	7	9.5	ΚΩ
	Tweet 2 IF	m = 0.3	Vi = 1 mV		40		dB
	Tweet 3 IF	0.0			55		dB
FM SECTION	ON ($f_0 = 10.8 \text{ MHz}$; $f_m = 1 \text{ KHz}$	2)					
V_{i}	Input limiting voltage	-3 dB limiting point			22	36	μV
AMR	Amplitude modulation rejection	$\Delta f = \pm 22.5 \text{ KHz}$ V _i = 3 mV	m = 0.3	40	50		dB
S/N	Ultimate quieting	$\Delta f = \pm 22.5 \text{ KHz}$	$V_i = 1 \text{ mV}$	55	65		dB
d	Distortion	$\Delta f = \pm 75 \text{ KHz}$	$V_i = 1 \text{ mV}$		0.7	1.5	%
d	Distortion	Δf = ±22.5 KHz	V _i = 1 mV		0.25	0.5	%
d	Distortion (double tuned)	_, - <u></u> , -	V — 1 1111 V		0.1		%
Vo	Recovered audio signal (pin 9)	$\Delta f = \pm 22.5 \text{ KHz}$	Vi = 1 mV	80	110	140	mV
Ri	Input resistance between pin 16 and ground				6.5		ΚΩ
Ci	Input capacitance between pin 16 and ground				14		pF
Ro	Output resistance (pin 9)			4.5	7	9.5	ΚΩ

Figure 1. Test circuit

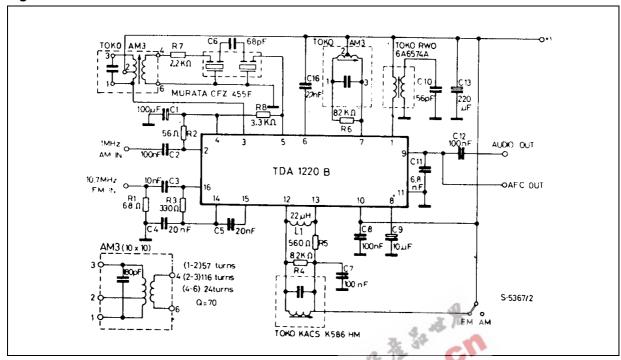


Figure 2. PC board and component layout (1:1 scale) of the test circuit

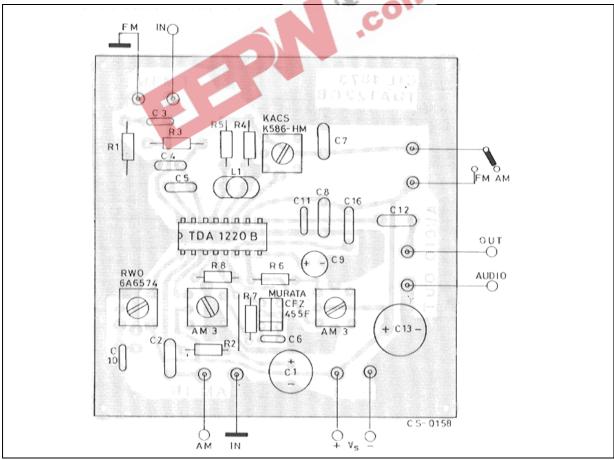


Figure 3. Audio output, noise and tweet levels vs. input signal (AM section)

Figure 4. Distortion vs. input signal and modulation index (AM section)

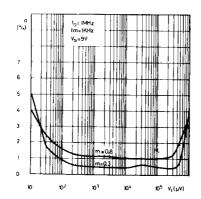


Figure 5. Audio output vs. supply voltage (AM section)

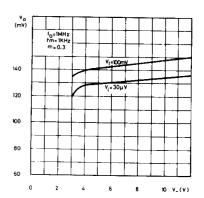


Figure 6. Audio output and noise level vs. input signal (FM section)

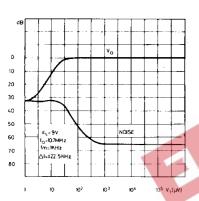


Figure 7. Distortion vs. input signal (FM section)

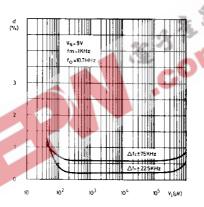


Figure 8. Audio output vs. supply voltage (FM section)

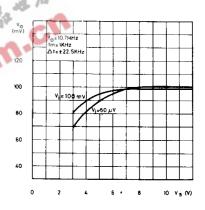


Figure 9. Amplitude modulation rejection vs. input signal (FM section)

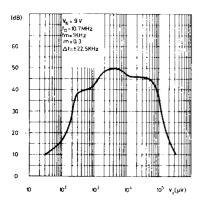


Figure 10. \triangle DC output voltage (pin. 9) vs. frequency shift (FM section)

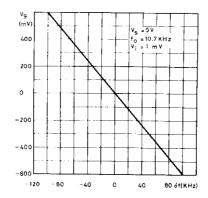
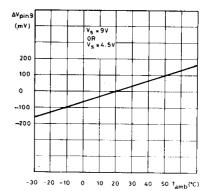



Figure 11. \triangle DC output voltage (pin 9) vs. ambient temperature (FM section)

APPLICATION INFORMATION

AM Section

RF Amplifier and mixer stages

The RF amplifier stage (pin 2) is connected directly to the secondary winding of the ferrite rod antenna or input tuned circuit. Bias is provided at pin 4 which must be adequately decoupled. The RF amplifier provides stable performance extending beyond 30 MHz.

The Mixer employed is a double - balanced multiplier and the IF output at pin 3 is connected directly to the IF filter coil.

Local oscillator

The local oscillator is a cross coupled differential stage which oscillates at the frequency determined by the load on pin 1.

The oscillator resonant circuit is transformer coupled to pin 1 to improve the **Q** factor and frequency stability. The oscillator level at pin 1 is about 100 mV rms and the performance extends beyond 30 MHz, however to enhance the stability and reduce to a minimum pulling effects of the AGC operation or supply voltage variations, a high C/L ratio should be used above 10 MHz.

An external oscillator can be injected at pin 1. The level should be 50 mV rms and pin 1 should be connected

The IF amplifier is a wide band amplifier with a tuned output stage.

The IF filters can be either LC or mixed LC/ceramic.

AM detection occurs at pin 7. A detection can detector products AM detection occurs at pin 7. A detection capacitor is connected to pin 6 to reduce the radiation of spurious

The Audio output is at pin 9 (for either AM or FM); the IF frequency is filtered by an external capacitor which is also used as the FM mono de-enphasis network. The audio output impedance is about $7K\Omega$ and a high impedance load ($\sim 50 \text{K}\Omega$) must be used.

AGC

Automatic gain control operates in two ways.

With weak signals it acts on the IF gain, maintaining the maximum S/N. For strong signals a second circuit intervenes which controls the entire chain and allows signal handling in excess of one volt (m = 0.8).

At pin 8 there is a carrier envelope signal which is filtered by an external capacitor to remove the Audio and RF content and obtain a mean DC signal to drive the AGC circuit.

FM Section

IF Amplifier and limiter

The 10.7 MHz IF signal from the ceramic filter is amplified and limited by a chain of four differential stages. Pin 16 is the amplifier input and has a typical input impedance of 6.5 KW in parallel with 14 pF at 10.7 MHz. Bias for the first stage is available at pin 14 and provides 100% DC feedback for stable operating conditions. Pin 15 is the second input to the amplifier and is decoupled to pin 14, which is grounded by a 20 nF capacitor. An RLC network is connected to the amplifier output and gives a 90° phase shift (at the IF centre frequency) between pins 13 and 12. The signal level at pin 13 is about 150 mV rms

FM Detector

The circuit uses a quadrature detector and the choise of component values is determined by the acceptable level of distortion at a given recovered audio level.

With a double tuned network the linearity improves (distortion is reduced) and the phase shift can be optimized; however this leads to a reduction in the level of the recovered audio. A satisfactory compromise for most FM receiver applications is shown in the test circuit.

- Locate the phase shift coil as near as possible to pin 13.
 Shunt pins 14 and 16 with a low value resistor (between 50)
 Ground the decoupling capacitor of
- Ground the decoupling capacitor of pin 14 and the 10.7 MHz input filter at the same point.

AM-FM Switching

AM-FM switching is achieved by applying a DC voltage at pin 13, to switch the internal reference.

Typical DC voltages (refer to the test circuit)

Pins	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Unit
AM	9	1.4	9	1.4	1.4	8.4	9	0.7	1.9	9	0	0.1	0.1	8.5	8.5	8.5	V
FM	9	0.02	9	0.02	0.02	8.5	9	0	1.7	9	0	9	9	8	8	8	V

APPLICATION SUGGESTION

Reccomended values are referred to the test circuit of Fig. 2.

Part number	Recommended value	Purpose	Smaller than recommended value	Larger than recommended value
C1	100 μF	AGC bypass	Increase of the distortion at low audio frequency	Increase of the AGC time constant
C2 (*)	100 nF	AM input DC cut		
C3 (*)	10 nF	FM input DC cut		
C4 C5	20 nF 20 nF	FM amplifier bypass	Reduction of sensitivity	Bandwidth increaseHigher noise
C6	68 pF	Ceramic filter coupling	IF bandwidth reduction	IF bandwidth increase
C7	100 nF	FM detector decoupling	Danger of RF irradiation	
C8	100 nF	Power supply bypass	Noise increase of the audio output	
C9	10 μF	AGC bypass	Increase of the distortion at low audio frequency	Increase of the AGC time constant
C10 (*)	56 pF	Tuning of the AM oscillator at 1455 KHz	2 30 M	
C11	6.8 nF	50 μs FM de-enphasis	The Market	
C12	100 nF	Output DC decoupling	Low audio frequency cut	
C13	220 μF	Power supply decoupling	Increase of the distortion at low frequency	
C16	2.7 nF	AM detector capacitor	Low suppression of the IF frequency and harmonics	Increase of the audio distortion
R1 (*)	68 ohm	FM input matching		
R2 (*)	56 ohm	AM input matching		
R3	330 ohm	Ceramic filter matching	Audio output decrease and lower distortion	
R4	8.2 Kohm	FM detector coil Q setting	Audio output decrease and higher AMR	Audio output increase and higher distortion
R5	560 ohm	FM detector load resistor	Lower IF gain and Lower AGC range	
R6	82 Kohm	AM detector coil Q setting		Higher IF gain and lower AGC range
R7	2.2 Kohm	455 KHz IF filter matching		
R8	3.3 Kohm	455 KHz IF filter matching		

^(*) Only for test circuit

Figure 12. Portable AM/FM radio

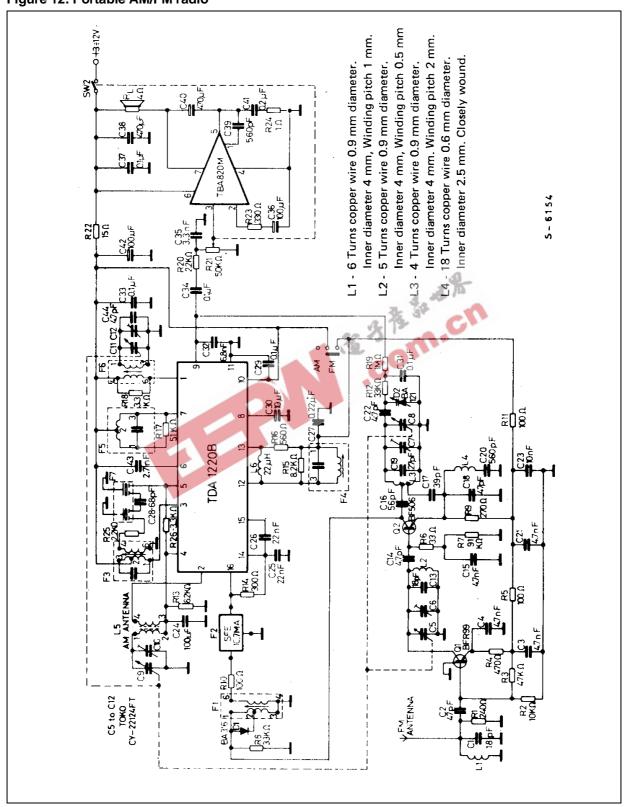
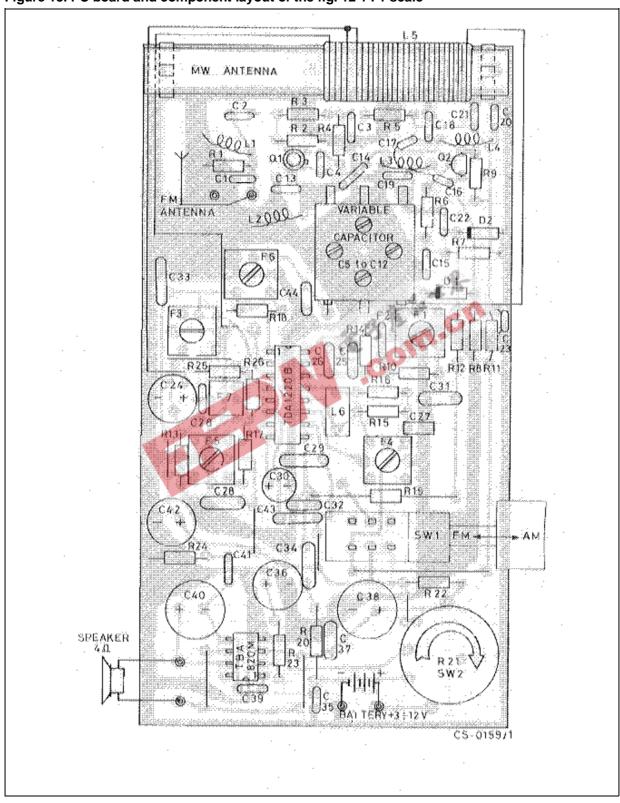
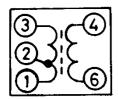
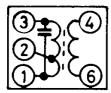
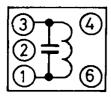




Figure 13. PC board and component layout of the fig. 12 1 : 1 scale


F1 - 10.7 MHz IF Coil

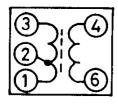
C _o (pF)	f (MHz)	Qo		TURNS	
_	(1411 12)	1-3	1-2	2-3	4-6
_	10.7	110	6	8	2

TOKO - FM1 - 10x10 mm. 154 AN - 7A5965R


F3 and F5 - 455 KHz IF Coil

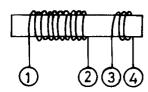
C _o (pF)	f (KHz)	Qo		TURNS	
1.3	(KHZ)	1-3	1-2	2-3	4-6
180	455	70	57	116	24

TOKO - AM3 - 10x10 mm. RLC - 4A7525N


F4 - FM Detector Coil

	180	455	70	57	116	24	RL
i	I			34	为苍	m.C	'n
	C _o (pF)	f (KHz)	Qo	·	TURNS		
	1.3	(KHZ)	1-3	1-3	1	ı	TC
	82	10.7	100	12	1	ı	KA

TOKO - 10x10 mm. KACS - K586 HM


F6 - AM Oscillator Coil

f	L	Qo		TURNS	
(kHz)	(μΗ) 1-3	1-3	1-2	2-3	4-6
796	220	80	2	75	8

TOKO - 10x10 mm. RWO + 6A6574N

L5 - Antenna Coil

f (KHz)	L (μ H)	Qo	TUF	RNS
(KHZ)	1-2	1-2	1-2	3-4
796			105	7

WIRE: LITZ - 15x0.05 mm. CORE: 10x80 mm.

Typical performance of the radio receiver of fig. 12 ($V_s = 9V$)

Parameter		Т	est Conditions	Value
WAVEBANDS	FM			87.5 to 108 MHz
WWW EBY WARDO	AM			510 to 1620 KHz
	FM	S/N = 26dB	Δf = 22.5KHz	1 μV
SENSITIVITY	AM	S/N = 6dB	m = 0.3	1 μV
	AM	S/N = 26dB	m = 0.3	10 μV
	FM	P _o = 0.5W	Δf = 22.5KHz	0.25%
DISTORTION (fm = 1KHz)	1 141	. 0 0.011	Δf = 75KHz	0,7%
(111 - 11(12)	AM	V _i = 100 μV	m = 0.3	0.4%
	7 (17)	νι = 100 μν	m = 0.8	0,8%
	FM	$P_0 = 0.5W$	Δf = 22.5KHz	64 dB
SIGNAL TO NOISE (fm = 1KHz)	1 141	V _i = 100 μV	AI = 22.01012	0145
(AM	$P_0 = 0.5W$	m = 0.3	50 dB
	7	$V_i = 1 \text{ mV}$	2379	
AMPLITUDE MODULATION REJECTION	FM	$V_i = 100 \mu\text{V}$	$\Delta f = 22.5 \text{KHz}$ m = 0.3	50 dB
TWEET	2nd H.	f = 911 KHz		0.3%
144551	3rd H.	f = 1370 KHz		0.07%
QUIESCENT CURREN	T			20 mA
SUPPLY VOLTAGE RAI	NGE			3 to 12V

Figure 14. Low cost 27 MHz receiver

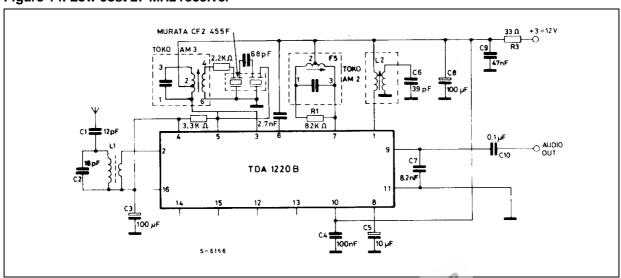


Figure 15. L2 Oscillator coil

Figure 16. L1 Antenna Coil œ •000 Coil support: Toko 10K Coil support: Toko 10K Primary winding: 10 Turns of enamelled cop-Primary winding: as L2 (pins 3-1) per wire 0.16 mm diameter (pins 3-1). Secondary winding: 2 Turns copper wire Secondary winding: 4 Turns copper wire 0.16 mm diameter (pins 6-4) 0.16 mm diameter (pins 6-4)

Figure 17. Low cost 27 MHz receiver with external xtal oscillator

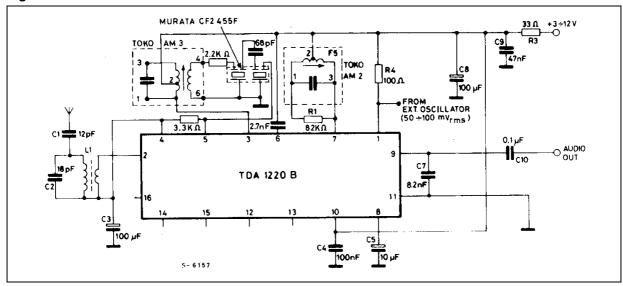


Figure 18. 455 KHz FM narrow band IF

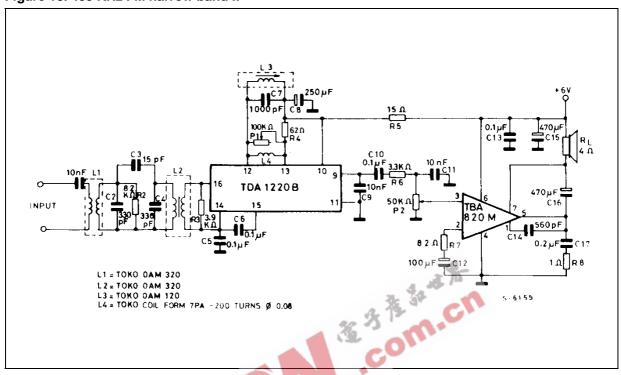


Figure 18. P.C. board and component layout of the circuit of fig. 18

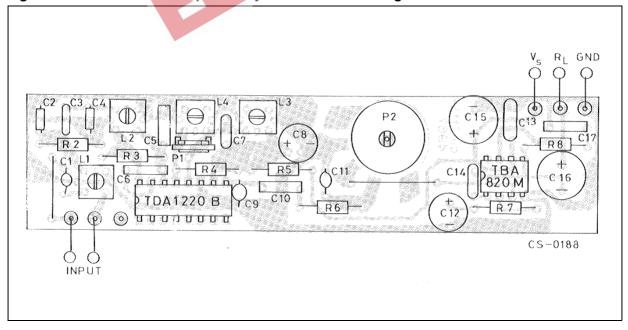


Figure 20. Discriminator "S" curve response (circuit of fig. 18)

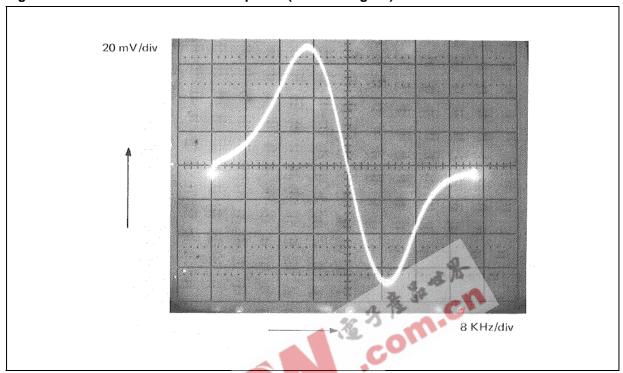
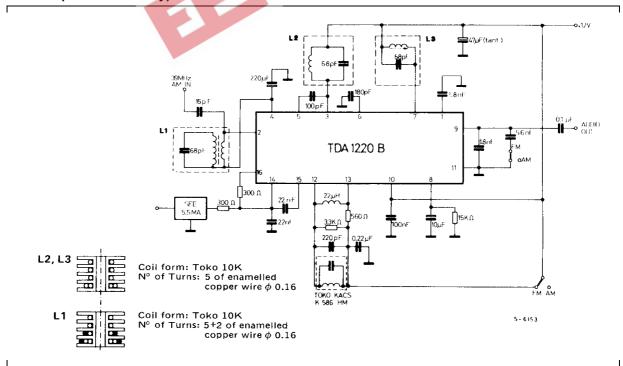



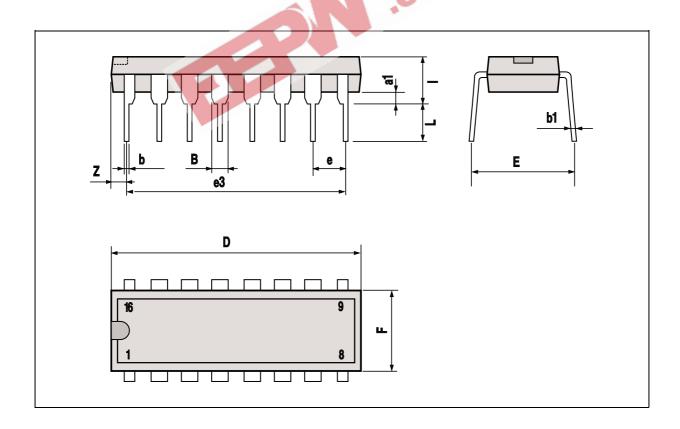
Figure 21. Application in sound channel of multistandard TV or in parallel AM modulated sound channel (AM section only).

ELECTRICAL CHARACTERISTICS (V_s = 12V)

AM Section ($f_o = 39MHz$; $f_m = 15KHz$)

Parameter	Тур	Unit
Audio out (m = 0.3)	60	mV
S/N ($V_i = 100 \text{ mV}$; $m = 0.3$)	37	dB
S/N ($V_i = 1 \text{ mV}$; $m = 0.3$)	55	dB
S/N ($V_i = 10mV$; $m = 0.3$)	56	dB
AGC range (m = 0.8, ΔV_{out} = 3dB)	65	dB
Max input signal handling (m = 0.8; d = 5%)	150	mV
- 3dB bandwidth	600	KHz
Distortion ($V_i = 100 \mu\text{V}$; $m = 0.3$)	2	%
$(V_i = 1 mV; m = 0.3)$	1	%
$(V_i = 10 \text{mV}; \qquad m = 0.3)$	0.8	%
$(V_i = 100 \mu\text{V}; m = 0.8)$	7	%
$(V_i = 1 mV; m = 0.8)$	5	%
$(V_i = 100 \mu\text{V}; \qquad m = 0.8)$ $(V_i = 1\text{mV}; \qquad m = 0.8)$ $(V_i = 10\text{mV}; \qquad m = 0.8)$	3	%

FM Section ($f_0 = 5.5MHz$; $f_m = 1KHz$)


		Parameter	Тур	Unit
$-3dB$ input limiting voltage ($\Delta f = 25KHz$)			3	μV
AMR	$(\Delta f = +25KHz;$	$m = 0.3;$ $V_i = 100 \mu V$)	40	dB
	$(\Delta f = +25KHz;$	$m = 0.3;$ $V_i = 1mV)$	58	dB
	$(\Delta f = +25KHz;$	$m = 0.3;$ $V_i = 10 mV)$	54	dB
S/N	$(\Delta f = \pm 25KHz;$	$V_i = 100 \mu V$)	51	dB
S/N	$(\Delta f = \pm 25KHz;$	$V_i = 1 \text{ mV}$	70	dB
S/N	$(\Delta f = \pm 25KHz;$	$V_i = 10 mV$)	70	dB
Distortion	$(\Delta f = \pm 25KHz;$	$V_i = 100 \mu V$)	0.5	%
	$(\Delta f = \pm 25KHz;$	$V_i = 1 \text{ mV}$	0.6	%
	$(\Delta f = \pm 25KHz;$	$V_i = 10 \text{ mV}$	0.6	%
	$(\Delta f = \pm 50KHz;$	$V_i = 100 \mu V$)	1	%
	$(\Delta f = \pm 50KHz)$	$V_i = 1 mV$)	1	%
	$(\Delta f = \pm 50KHz;$	$V_i = 10 mV$)	1	%
Recovered audio ($\Delta f = \pm 15 \text{KHz}$; $V_i = 1 \text{ mV}$) Recovered audio can be varied by variation of 3.3K ohm resistor in parallel with the discriminator coil)			70	mV
Max input signal handling				V

Note: AM performance at 39MHz can be improved by mean of a selective preamplifier stage.

DIP16 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1		4	0.280
ı			5.1	4,18	The	0.201
L		3.3		水花	0.130	
Z			1.27	-OW		0.050

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

