
The TL7705BM is obsolete and no longer is supplied.

- **Power-On Reset Generator**
- **Automatic Reset Generation After** Voltage Drop
- **RESET** Output Defined From $V_{CC} \ge 1 V$
- **Precision Voltage Sensor**

- SLVS037M SEPTEMBER 1989 REVISED MAY 2003
- **Temperature-Compensated Voltage** Reference
- **True and Complement Reset Outputs**
- **Externally Adjustable Pulse Duration**

description/ordering information

The TL7702B, TL7705B, and TL7733B are integrated-circuit supply-voltage supervisors designed for use as reset controllers in microcomputer and microprocessor systems. The supply-voltage supervisor monitors the supply for undervoltage conditions at the SENSE input. During power up, the RESET output becomes active (low) when V_{CC} attains a value approaching 1 V. As V_{CC} approaches 3 V (assuming that SENSE is above V_{T+}), the delay-timer function activates a time delay, after which outputs RESET and RESET go inactive (high and low, respectively). When an undervoltage condition occurs during normal operation, outputs RESET and RESET go active. To ensure that a complete reset occurs, the reset outputs remain active for a time delay after the voltage at the SENSE input exceeds the positive-going threshold value. The time delay is determined by the value of the external capacitor C_T: $t_d \approx 2.6 \times 10^4 \times C_T$, where C_T is in farads (F) and t_d is in seconds (s).

An external capacitor (typically 0.1 µF) must be connected to REF to reduce the influence of fast transients in the supply voltage.

The TL7702BC, TL7705BC, and TL7733BC are characterized for operation from 0°C to 70°C. The TL7702BI, TL7705BI, and TL7733BI are characterized for operation from -40°C to 85°C. The TL7705BQ is characterized for operation from -40°C to 125°C. The TL7705BM is characterized for operation from -55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003. Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

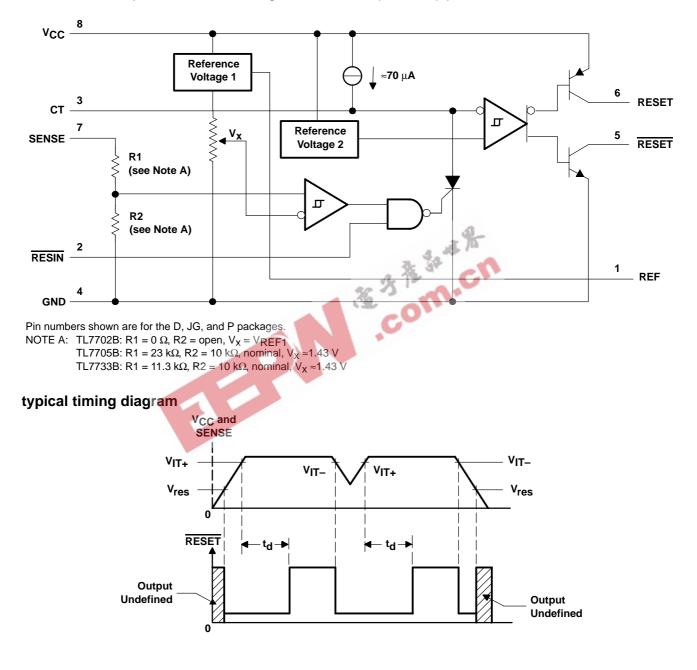
SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

The TL7705BM is obsolete and no longer is supplied.

description/ordering information (continued)

TA	PACKA	PACKAGET		TOP-SIDE MARKING					
	PDIP (P)	Tube of 50	TL7702BCP	TL7702BCP					
	SOIC (D)	Tube of 75	TL7702BCD	7702BC					
	SOIC (D)	Reel of 2500	TL7702BCDR	770280					
	PDIP (P)	Tube of 50	TL7705BCP	TL7705BCP					
0°C to 70°C	SOIC (D)	Tube of 75	TL7705BCD	7705BC					
	SOIC (D)	Reel of 2500	TL7705BCDR	770560					
	PDIP (P)	Tube of 50	TL7733BCP	TL7733BCP					
		Tube of 75	TL7733BCD	7733BC					
	SOIC (D)	Reel of 2500	TL7733BCDR	773300					
	PDIP (P)	Tube of 50	TL7702BIP	TL7702BIP					
		Tube of 75	TL7702BID	7702BI					
	SOIC (D)	Reel of 2500	TL7702BIDR	770201					
	PDIP (P)	Tube of 50	TL7705BIP	TL7705BIP					
–40°C to 85°C	SOIC (D)	Tube of 75	TL7705BID	7705BI					
	SOIC (D)	Reel of 2500	TL7705BIDR	77056					
	PDIP (P)	Tube of 50	TL7733BIP	TL7705BIP					
	SOIC (D)	Tube of 75	TL7733BID	7733BI					
	SOIC (D)	Reel of 2500	TL7733BIDR	113301					
–40°C to 125°C	SOIC (D)	Tube of 75	TL7705BQD	TL7705BQD					

ORDERING INFORMATION


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

functional block diagram

The functional block diagram is shown for illustrative purposes only; the actual circuit includes a trimming network to adjust the reference voltage and sense-comparator trip point.

SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

The TL7705BM is obsolete and no longer is supplied.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V_{CC} (see Note 1) Input voltage range, V_{I} : RESIN SENSE High-level output current, I_{OH} (RESET) Low-level output current, I_{OL} (RESET) Package thermal impedance, θ_{JA} (see Notes 2 and 3):D package P package Operating virtual junction temperature, T_{J} Case temperature for 60 seconds, T_{C} : FK package Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG or U package	-0.3 V to 20 V -0.3 V to 20 V -30 mA -30 mA -30 mA -7°C/W -85°C/W -150°C -260°C
Case temperature for 60 seconds, T _C : FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P packages Storage temperature range, T _{stg}	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - and the indefinition of the second state of the secon

recommended operating conditions

			MIN	MAX	UNIT
Vcc	Supply voltage		3.6	18	V
VIH	High-level input voltage	RESIN	2	18	V
VIL	Low-level input voltage	RESIN	0	0.8	V
VI	Input voltage	SENSE	0	18	V
IOH	High-level output current	RESET		-20	mA
IOL	Low-level output current	RESET		20	mA
		TL77xxBC	0	70	
	Or exching free air temperature range	TL77xxBI	-40	85	°C
TA	Operating free-air temperature range	TL7705BQ	-40	125	U
		TL7705BM	-55	125	

SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER			TEST CONDITIONS [†]		TL77xxBC TL77xxBI TL7705BQ			UNIT	
						MIN	TYP	MAX	
∨он	High-level output vo	oltage, RES	ET	I _{OH} = -16 mA		V _{CC} -1.5			V
VOL	Low-level output vo	ltage, RES	ET	I _{OL} = 16 mA				0.4	V
Vref	Reference voltage,	REF		I _{ref} = -500 μA,	T _A = 25°C	2.48	2.53	2.58	V
			TL7702B			2.505	2.53	2.555	
				4.5	4.55	4.6	v		
N	Negative-going			3.03	3.08	3.13			
VIT-	input threshold volta at SENSE input	age	TL7702B			2.48	2.53	2.58	v
			TL7705B	$T_A = full range^{\ddagger}$		4.45	4.55	4.65	
			TL7733B		3	3.08	3.16		
			TL7702B				10		
V _{hys}	Hysteresis, SENSE (V _{IT+} – V _{IT} –)		TL7705B	$V_{CC} = 3.6 V$ to 18 V, $T_A =$	T _A = 25°C		30		mV
			TL7733B	1	2		10		
Vres§	Power-up reset volt	age		I _{OL} at RESET = 2 mA,	$T_A = 25^{\circ}C$			1	V
		RESIN		$V_I = 0.4 V$ to V_{CC}				-10	
1	Input current	SENSE	TL7702B	VI = Vref to 18 V			-0.1	-2	μA
ЮН	OH High-level output current, RESET		V _O = 18 V,	See Figure 1			50	μA	
IOL	Low-level output current, RESET		$V_{O} = 0 V,$	See Figure 1			-50	μA	
	ICC Supply current			VSENSE = 15 V,	RESIN ≥ 2 V		1.8	3	
				V _{CC} = 18 V,	T _A = full range‡			3.5	mA

[†] All electrical characteristics are measured with 0.1-μF capacitors connected at REF, CT, and V_{CC} to GND. [‡] Full range is 0°C to 70°C for the C-<u>suffix devices</u>, -40°C to 85°C for the I-suffix devices, and -40°C to 125°C for the Q-suffix device.

§ This is the lowest voltage at which RESET becomes active.

switching characteristics, $V_{CC} = 5 V$, C_T open, $T_A = 25^{\circ}C$

	PARAMETER FROM (INPUT)				TL77xxBC TL77xxBI TL7705BQ			UNIT	
					MIN	TYP	MAX		
^t PLH	Propagation delay time from low- to high-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500	ns	
^t PHL	Propagation delay time from high- to low-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500	ns	
	RESIN			See Figure 2		150			
tw	Effective pulse duration	SENSE		See Figure 2		100		ns	
tr	Rise time		RESET	See Figures 1 and 3			75	ns	
t _f	Fall time			See Figures 1 and 5		150	200	115	
tr	t _r Rise time		RESET	Soo Figuroo 1 and 2		75	150		
t _f Fall time		RESET	See Figures 1 and 3			50	ns		

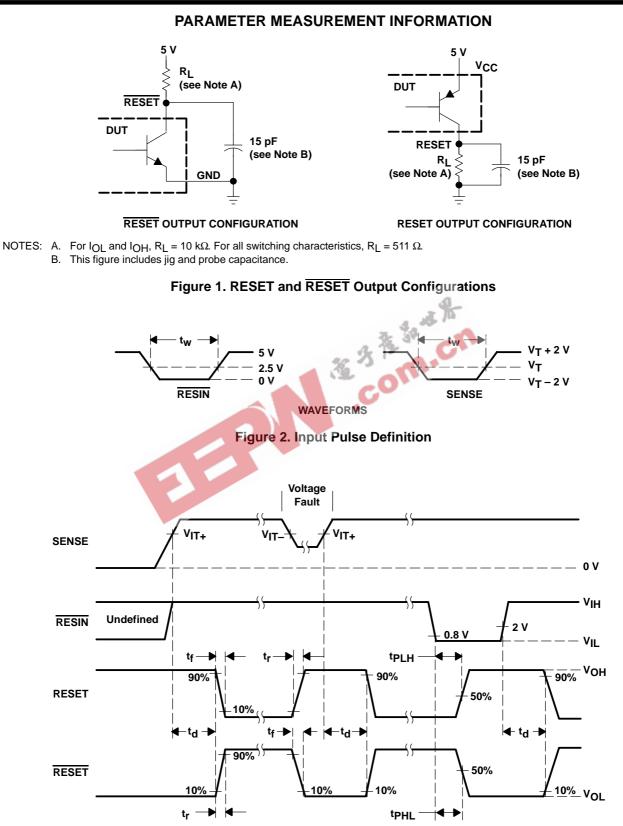
SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

The TL7705BM is obsolete and no longer is supplied.

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER			t	TL7	705BM			
			TEST CONDITIONS [†]	MIN	TYP	MAX	UNIT	
∨он	High-level output	ut voltage, F	RESET	I _{OH} = -16 mA	V _{CC} -1.5			V
VOL	Low-level output	t voltage, R	ESET	I _{OL} = 16 mA			0.4	V
V _{ref}	Reference volta	ge, REF		$I_{ref} = -500 \ \mu A$, $T_A = 25^{\circ}C$	2.48	2.53	2.58	V
			TL7702B	T. 05%C	2.505	2.53	2.555	
N	Negative-going		TL7705B	$T_A = 25^{\circ}C$	4.5	4.55	4.6	V
VIT-	input threshold voltage at SENSE input		TL7702B	T 5500 / 40500	2.48	2.53	2.58	v
			TL7705B	$T_A = -55^{\circ}C$ to 125°C	4.45	4.55	4.65	
14			TL7702B			10		
V _{hys}			TL7705B	$V_{CC} = 3.6 V \text{ to } 18 V, T_A = 25^{\circ}C$		30		mV
v _{res} ‡	Power-up reset	voltage		I_{OL} at $\overline{RESET} = 2 \text{ mA}$, $T_A = 25^{\circ}C$			1	V
	land the summer of	RESIN		$V_{I} = 0.4 V \text{ to } V_{CC}$			-10	
11	Input current SENSE	SENSE	TL7702B	$V_I = V_{ref}$ to $V_{CC} - 1.5 V$		-0.1	-2	μA
ЮН	High-level output current, RESET		ESET	V _O = 18 V	0		50	μA
IOL	Low-level output current, RESET		ESET	$V_{O} = 0$	15		-50	μA
	Supply current			V _{SENSE} = 15 V, RESIN ≥ 2 V	-10	1.8	3	0
ICC				$V_{CC} = 18 V$, $T_A = -55^{\circ}C$ to $125^{\circ}C$			4	mA

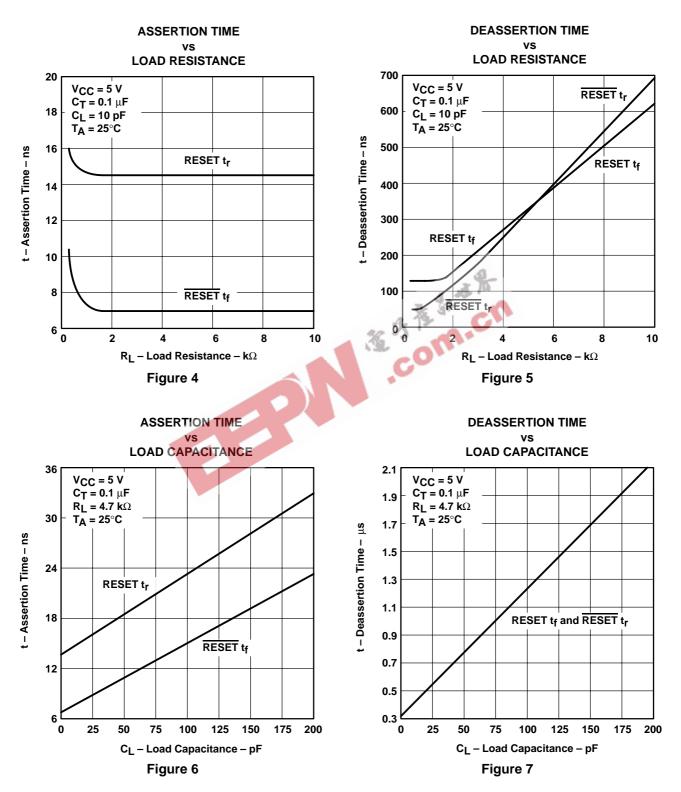
[†] All electrical characteristics are measured with 0.1- μ F capacitors connected at REF, CT, and V_{CC} to GND. [‡] This is the lowest value at which RESET becomes active.


switching characteristics, $V_{CC} = 5 V$, C_T open, $T_A = 25 °C$

	PARAMETER	FROM	то	TEST CONDITIONS	TL	.7705BN	1	UNIT			
	PARAMETER	(INPUT) (OUTPUT)		TEST CONDITIONS	MIN	TYP	MAX	UNIT			
^t PLH	Propagation delay time from low- to high-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500*	ns			
^t PHL	Propagation delay time from high- to low-level output	RESIN	RESET	See Figures 1, 2, and 3		270	500*	ns			
			RESIN			Coo Figuro 2		150			
tw	Effective pulse duration	SENSE		See Figure 2	100			ns			
tr	Rise time		DEOFT	See Figures 1 and 3			75*	ns			
t _f	Fall time		RESET	See Figures 1 and 5		150	200*	115			
tr	Rise time		RESET	See Figures 1 and 3		75	150*	200			
tf	Fall time		RESEI	See Figures 1 and 5			50*	ns			

* On products compliant to MIL-PRF-38535, these parameters are not production tested.

SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

The TL7705BM is obsolete and no longer is supplied.

TYPICAL CHARACTERISTICS[†]

[†] For proper operation, both RESET and RESET should be terminated with resistors of similar value. Failure to do so may cause unwanted plateauing in either output waveform during switching.

SLVS037M - SEPTEMBER 1989 - REVISED MAY 2003

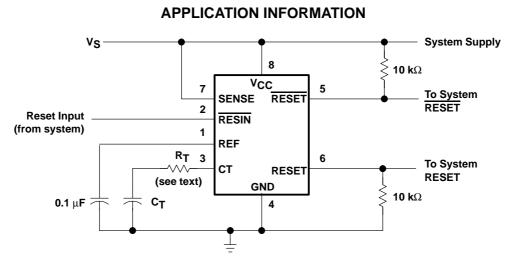


Figure 8. System Reset Controller With Undervoltage Sensing

When the TL770xB SENSE terminal is used to monitor V_{CC} , a current-limiting resistor in series with C_T is recommended. During normal operation, the timing capacitor is charged by the onboard current source to approximately V_{CC} or an internal voltage clamp (\approx 7.1-V Zener), whichever is less. When the circuit then is subjected to an undervoltage condition during which V_{CC} is rapidly slewed down, the voltage on CT exceeds that on V_{CC} . This forward biases a secondary path internally, which falsely activates the outputs. A fault is indicated when V_{CC} drops below $V_{(CT)}$, not when V_{SENSE} falls below V_{T-} .

Texas Instruments performs a 100% electrical screen to verify that the outputs do not switch with 1 mA forced into the CT terminal. Adding the external resistor, R_T, prevents false triggering. Its value is calculated as follows:

$$\frac{V_{(CT)}-V_{T_{-}}}{R_{\tau}}$$

Where:

 $\begin{array}{ll} V_{(CT)} &= V_{CC} \mbox{ or } 7.1 \mbox{ V, whichever is less} \\ V_{T-} &= 4.55 \mbox{ V (nom)} \\ R_T &= \mbox{ value of series resistor required} \end{array}$

For $V_{CC} = 5$ V:

$$\frac{5-4.55}{R_{T}}$$
 < 1 mA

Therefore,

 $R_{T} > 450 \Omega$

Using a 20%-tolerance resistor, R_T should be greater than 560 Ω .

Adding this series resistor changes the duration of the reset pulse by no more than 10%. R_T extends the discharge of C_T , but also skews the $V_{(CT)}$ threshold. These effects tend to cancel one another. The precise percentage change can be derived theoretically, but the equation is complicated by this interaction and is dependent upon the duration of the supply-voltage fault condition.

Both outputs of the TL770xB should be terminated with similar value resistors, even when only one is being used. This prevents unwanted plateauing in either output waveform during switching, which may be interpreted as an undefined state or delay system reset.

PACKAGE OPTION ADDENDUM

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾ I	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
5962-88685042A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
5962-8868504HA	OBSOLETE	CFP	U	10		TBD	Call TI	Call TI
5962-88685052A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
5962-8868505HA	OBSOLETE	CFP	U	10		TBD	Call TI	Call TI
5962-8868505PA	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
TL7702BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BCDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BCDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BCDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BCDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7702BCPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7702BID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7702BIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7702BIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7702BMFKB	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
TL7702BMJG	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
TL7702BMJGB	OBSOLETE	CDIP	JG	8		TBD	Call TI	Call TI
TL7702BMUB	OBSOLETE	CFP	U	10		TBD	Call TI	Call TI
TL7702BQD	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL7702BQDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI
TL7702BQP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TL7705BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TL7705BCDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TL7705BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TL7705BCDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS &	CU NIPDAU	Level-2-260C-1YEAR

PACKAGE OPTION ADDENDUM

6-Dec-2006

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽
						no Sb/Br)		
TL7705BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7705BCPE4	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7705BID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEA
TL7705BIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEA
TL7705BIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEA
TL7705BIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEA
TL7705BIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7705BIPE4	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7705BMFKB	OBSOLETE	LCCC	FK	20	25.0	TBD	Call TI	Call TI
TL7705BMJG	OBSOLETE	CDIP	JG	8	13	TBD	Call TI	Call TI
TL7705BMJGB	OBSOLETE	CDIP	JG	8	2.	TBD	Call TI	Call TI
TL7705BMUB	OBSOLETE	CFP	U	10	-0	TBD	Call TI	Call TI
TL7705BQD	ACTIVE	SOIC 属	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLII
TL7705BQDR	ACTIVE	SOIC	D	8	2500	TBD	CU NIPDAU	Level-1-220C-UNLII
TL7705BQP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TL7733BCD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL7733BCDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL7733BCDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL7733BCDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
TL7733BCP	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7733BCPE4	ACTIVE	PDIP	Ρ	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7733BID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL7733BIDE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL7733BIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
TL7733BIDRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
TL7733BIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7733BIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

 $^{(1)}$ The marketing status values are defined as follows:

6-Dec-2006

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

3-5

OBSOLETE: TI has discontinued the production of the device.

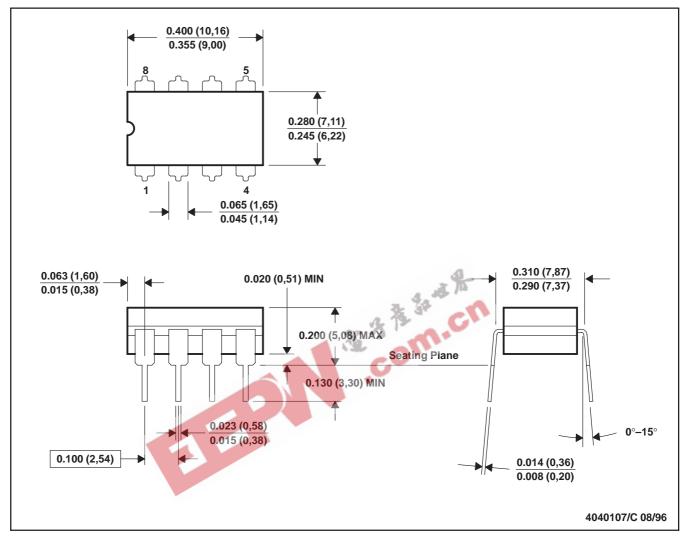
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

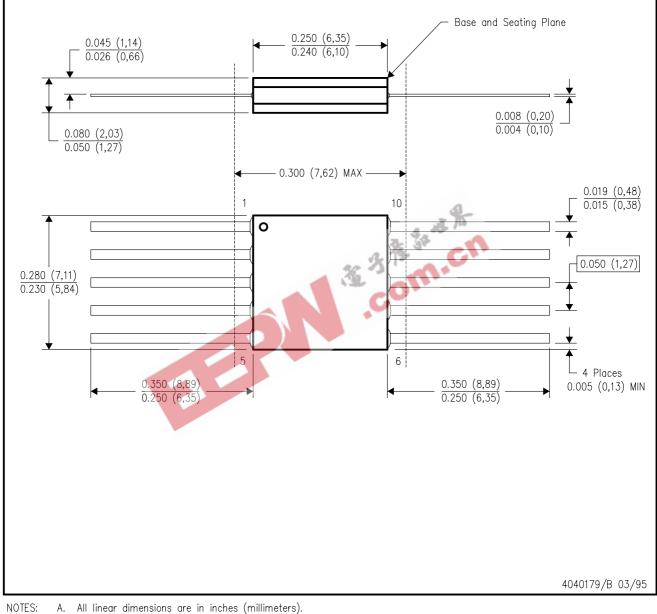
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MCER001A - JANUARY 1995 - REVISED JANUARY 1997

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).


JG (R-GDIP-T8)

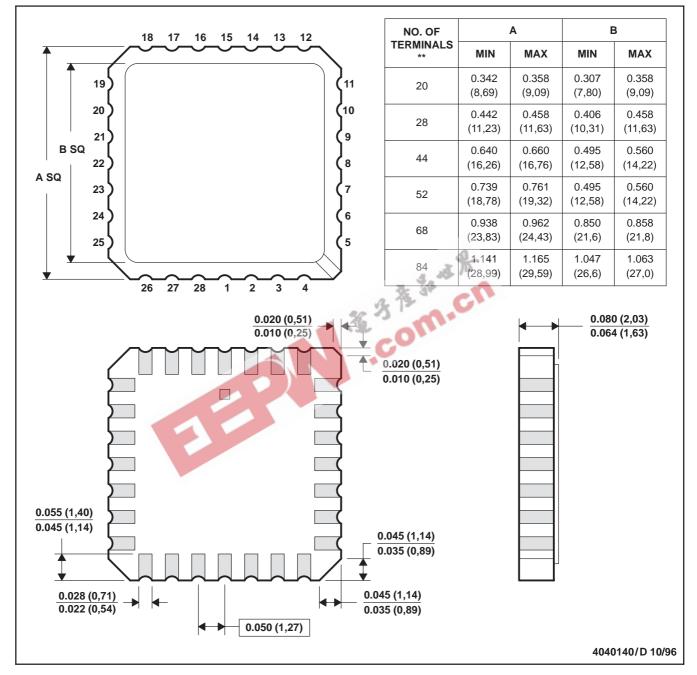
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

Β. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA



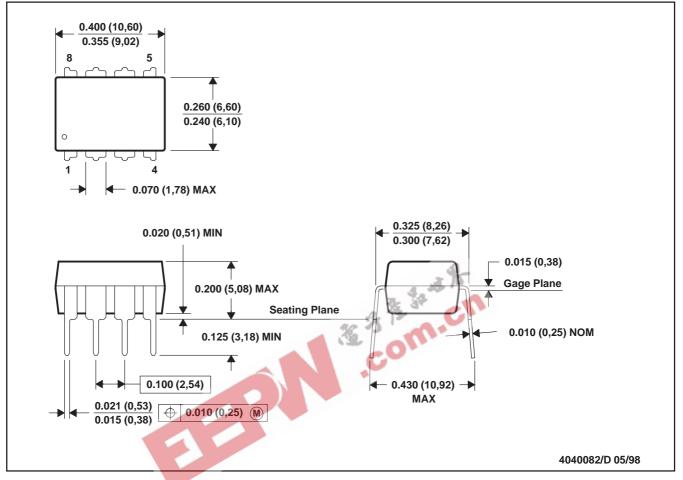
MECHANICAL DATA

MLCC006B - OCTOBER 1996

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

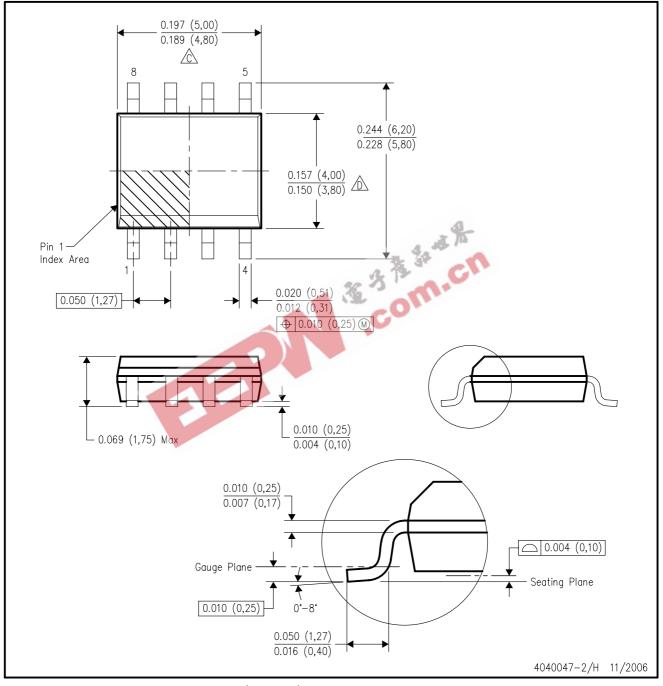
MECHANICAL DATA

PLASTIC DUAL-IN-LINE

MPDI001A - JANUARY 1995 - REVISED JUNE 1999

P (R-PDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.

🖄 Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an untair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications

Products

		rependanente	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

Wireless

www.ti.com/wireless