SLVS042D - JANUARY 1991 - REVISED JULY 1999

- **Power-On Reset Generator**
- Automatic Reset Generation After Voltage Drop
- **Precision Input Threshold** Voltage . . . 4.55 V ±120 mV
- Low Standby Current . . . 20 µA
- Reset Outputs Defined When V_{CC} Exceeds 1 V
- **True and Complementary Reset Outputs**
- Wide Supply-Voltage Range ... 1 V to 7 V

D. P. OR PW PACKAGE (TOP VIEW) RESET h 8 RESET Π 7 2 NC [] 36 🛛 NC Г V_{CC} Δ 5 Π

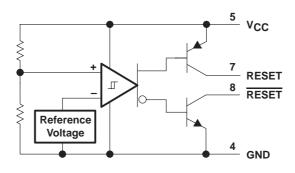
NC - No internal connection

NC

NC

GND

description


The TL7759 is a supply-voltage supervisor designed for use as a reset controller in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, V_{CC}, attains a value approaching 1 V, the RESET and RESET outputs become active (high and low, respectively) to prevent undefined operation. If the supply voltage drops below the input threshold voltage level (VIT-), the reset outputs go to the reset active state until the supply voltage has returned to its nominal value (see timing diagram).

The TL7759C is characterized for operation from 0°C to 70°

_	AVAILABLE OPTIONS								
	тд	SMALL OUTLINE (D)	PLASTIC DIP (P)	SHRINK SMALL OUTLINE (PW)	CHIP FORM (Y)				
	0°C to 70°C	TL7759CD	TL7759CP	TL7759CPW	TL7759Y				

The D and PW packages are available taped and reeled. Add the suffix R to the device type (e.g., TL7759CDR). Chip forms are tested at 25°C.

functional block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SLVS042D - JANUARY 1991 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)	20 V
Off-state output voltage range: RESET voltage	
RESET voltage	–0.3 V to 20 V
Low-level output current, I _{OL} (RESET)	30 mA
High-level output current, I _{OH} (RESET)	–10 mA
Package thermal impedance, θ _{JA} (see Notes 2 and 3): D package	97°C/W
P package	127°C/W
PW package	149°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	. –65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.

The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace 3. length of zero. 2 3 3 3 K

recommended operating conditions

	20	N. A.	MIN	MAX	UNIT
Supply voltage, V _{CC}	131	-0	1	7	V
Output veltore V/c (coo Note 4)		Transistor off RESET voltage		15	V
Output voltage, VO (see Note 4)		Transistor off RESET voltage	0		V
Low-level output current, IOL		RESET		24	mA
High-level output current, IOH		RESET		-8	mA
Operating free-air temperature, TA		TL7759C	0	70	°C

NOTE 4: RESET output must not be pulled down below GND potential.

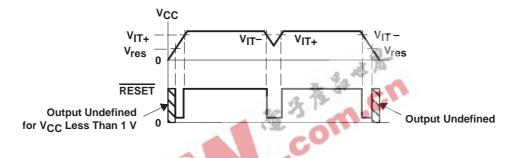
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		TL7759C			
					MIN	TYP‡	MAX	UNIT
VOL	Low-level output voltage	RESET	V/00 - 4 2 V	I _{OL} = 24 mA		0.4	0.8	V
Vон	High-level output voltage	RESET	V _{CC} = 4.3 V	I _{OH} = -8 mA	V _{CC} -1			V
	Input threshold voltage (negative-going V _{CC})		T _A = 25°C		4.43	4.55	4.67	V
VIT-			$T_A = 0^{\circ}C$ to $70^{\circ}C$	4.4		4.7		
			$R_1 = 2.2 k\Omega$	T _A = 25°C		0.8	1	V
V _{res} §	Power-up reset voltage		$R_{L} = 2.2 \text{ K}_{2}$	$T_A = 0^{\circ}C$ to $70^{\circ}C$			1.2	v
., «	Hysteresis at V_{CC} input		$T_A = 25^{\circ}C$		40	50	60	mV
V _{hys} ¶			$T_A = 0^{\circ}C$ to $70^{\circ}C$		30		70	mv
ЮН	High-level output current	RESET		V _{OH} = 15 V			1	μA
IOL	Low-level output current	RESET	V_{CC} = 7 V, See Figure 1	V _{OL} = 0 V			-1	μA
100	O		Noload	V _{CC} = 4.3 V		1400	2000	
ICC	Supply current		No load	V _{CC} = 5.5 V	40		μA	

[‡]Typical values are at $T_A = 25^{\circ}C$.

§ This is the lowest voltage at which RESET becomes active, V_{CC} slew rate \leq 5 V/µs.

This is the difference between positive-going input threshold voltage, VIT+, and negative-going input threshold voltage, VIT-.

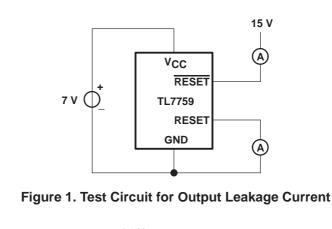

SLVS042D - JANUARY 1991 - REVISED JULY 1999

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

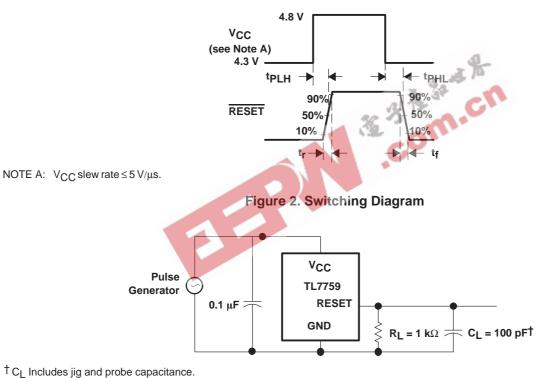
DADAMETED			TEAT A	TL7759Y				
	PARAMETER			TEST CONDITIONS			MAX	UNIT
VOL	ow-level output voltage RESET V		V _{CC} = 4.3 V,	I _{OL} = 24 mA		0.4		V
VIT-	Input threshold voltage (negative-going				4.55		V	
v _{res} †	res [†] Power-up reset voltage		RL = 2.2 kΩ			0.8		V
V _{hys} ‡	Hysteresis at V_{CC} input					50		mV
ICC	Supply current		V _{CC} = 4.3 V,	No load		1400		μA

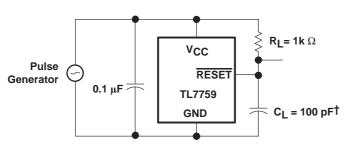
[†] This is the lowest voltage at which RESET becomes active, V_{CC} slew rate $\leq 5 \text{ V/}\mu\text{s}$. [‡] This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT-}.

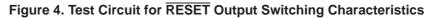
timing diagram

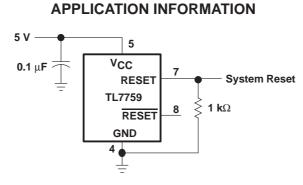

switching characteristics at $T_A = 25^{\circ}C$ (unless otherwise noted)

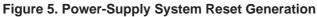
PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TL7759C		UNIT
				TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to high-level output	VCC	RESET	See Figures 2 and 3§		5	μs
^t PHL	Propagation delay time, high-to low-level output	VCC	RESET	See Figures 2 and 4		5	μs
tr	Rise time		RESET	See Figures 2 and 4§		1	μs
t _f	Fall time		RESET	See Figures 2 and 4		1	μs
^t w(min)	Minimum pulse duration	VCC	RESET	See Figures 2 and 4	5		μs


§ V_{CC} slew rate ≤ 5 V/μs


SLVS042D – JANUARY 1991 – REVISED JULY 1999


PARAMETER MEASUREMENT INFORMATION




[†]C_I Includes jig and probe capacitance.

SLVS042D - JANUARY 1991 - REVISED JULY 1999

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated