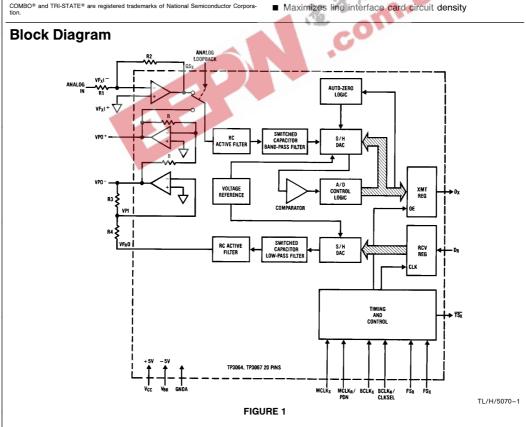


TP3064, TP3067 "Enhanced" Serial Interface **CMOS CODEC/Filter COMBO®**

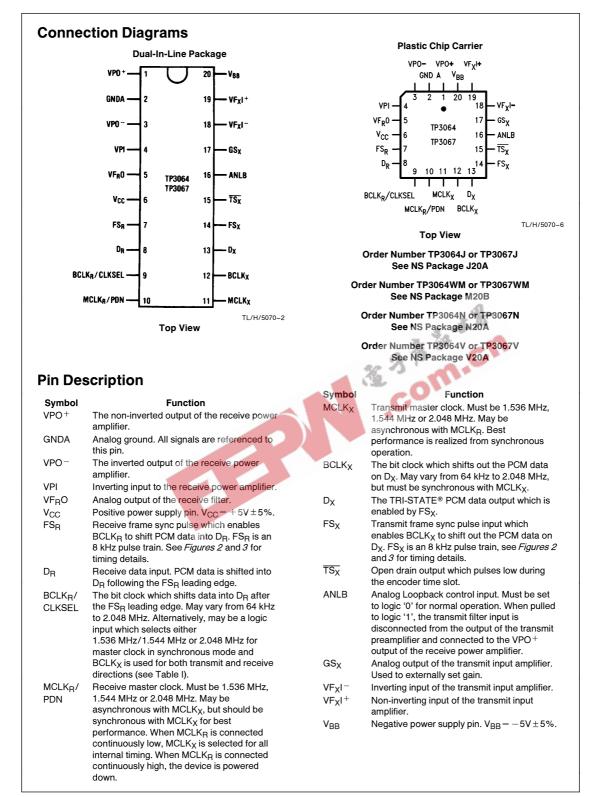
General Description

The TP3064 (μ -law) and TP3067 (A-law) are monolithic PCM CODEC/Filters utilizing the A/D and D/A conversion architecture shown in Figure 1, and a serial PCM interface. The devices are fabricated using National's advanced double-poly CMOS process (microCMOS).


Similar to the TP305X family, these devices feature an additional Receive Power Amplifier to provide push-pull balanced output drive capability. The receive gain can be adjusted by means of two external resistors for an output level of up to $\pm 6.6V$ across a balanced 600 Ω load.

Also included is an Analog Loopback switch and a $\overline{TS_X}$ output.

See also AN-370, "Techniques for Designing with CODEC/ Filter COMBO Circuits."


Features

- Complete CODEC and filtering system including: - Transmit high-pass and low-pass filtering
 - Receive low-pass filter with sin x/x correction
 - Active RC noise filters
 - μ-law or A-law compatible COder and DECoder
 - Internal precision voltage reference
 - Serial I/O interface
 - Internal auto-zero circuitry
 - Receive push-pull power amplifiers
- μ-law—TP3064
- A-law—TP3067
- Designed for D3/D4 and CCITT applications
- ±5V operation
- Low operating power—typically 70 mW
- Power-down standby mode—typically 3 mW
- Automatic power-down
- TTL or CMOS compatible digital interfaces
- Maximizes line interface card circuit density

© 1995 National Semiconductor Corporation TL/H/5070 RRD-B30M115/Printed in U. S. A.

October 1991

Functional Description

POWER-UP

When power is first applied, power-on reset circuitry initializes the COMBOTM and places it into a power-down state. All non-essential circuits are deactivated and the D_X, VF_RO, VPO⁻ and VPO⁺ outputs are put in high impedance states. To power-up the device, a logical low level or clock must be applied to the MCLK_R/PDN pin *and* FS_X and/or FS_R pulses must be present. Thus, 2 power-down control modes are available. The first is to pull the MCLK_R/PDN pin high; the alternative is to hold both FS_X and FS_R inputs continuously low—the device will power-down approximately 2 ms after the last FS_X or FS_R pulse. Power-up will occur on the first FS_X or FS_R pulse. The TRI-STATE PCM data output, D_X, will remain in the high impedance state until the second FS_X pulse.

SYNCHRONOUS OPERATION

For synchronous operation, the same master clock and bit clock should be used for both the transmit and receive directions. In this mode, a clock must be applied to MCLK_X and the MCLK_R/PDN pin can be used as a power-down control. A low level on MCLK_R/PDN powers up the device and a high level powers down the device. In either case, MCLK_X will be selected as the master clock for both the transmit and receive circuits. A bit clock must also be applied to BCLK_X and the BCLK_R/CLKSEL can be used to select the proper internal divider for a master clock of 1.536 MHz, 1.544 MHz or 2.048 MHz. For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame.

With a fixed level on the BCLK_R/CLKSEL pin, BLCK_X will be selected as the bit clock for both the transmit and receive directions. Table 1 indicates the frequencies of operation which can be selected, depending on the state of BCLK_R/CLKSEL. In this synchronous mode, the bit clock, BCLK_X, may be from 64 kHz to 2.048 MHz, but must be synchronous with MCLK_X.

Each FS_X pulse begins the encoding cycle and the PCM data from the previous encode cycle is shifted out of the enabled D_X output on the positive edge of BCLK_X. After 8 bit clock periods, the TRI-STATE D_X output is returned to a high impedance state. With an FS_R pulse, PCM data is latched via the D_R input on the negative edge of BCLK_X (or BCLK_R if running). FS_X and FS_R must be synchronous with MCLK_{X/R}.

TABLE I. Selection of Master Clock Frequencies	TABLE I	Selection	of Master	Clock Fred	uencies
--	---------	-----------	-----------	-------------------	---------

BCLK _R /CLKSEL	Master Clock Frequency Selected			
BOERR/ DEROLE	TP3067	TP3064		
Clocked	2.048 MHz	1.536 MHz or		
		1.544 MHz		
0	1.536 MHz or	2.048 MHz		
	1.544 MHz			
1	2.048 MHz	1.536 MHz or		
		1.544 MHz		

ASYNCHRONOUS OPERATION

For asynchronous operation, separate transmit and receive clocks may be applied. $MCLK_X$ and $MCLK_R$ must be 2.048 MHz for the TP3067, or 1.536 MHZ, 1.544 MHz for the TP3064, and need not be synchronous. For best transmis-

sion performance, however, MCLK_R should be synchronous with MCLK_X, which is easily achieved by applying only static logic levels to the MCLK_R/PDN pin. This will automatically connect MCLK_X to all internal MCLK_R functions (see Pin Description). For 1.544 MHz operation, the device automatically compensates for the 193rd clock pulse each frame. FS_X starts each encoding cycle and must be synchronous with MCLK_X and BCLK_X. FS_R starts each decoding cycle and must be synchronous with BCLK_R. BCLK_R must be a clock, the logic levels shown in Table I are not valid in asynchronous mode. BCLK_X and BCLK_R may operate from 64 kHz to 2.048 MHz.

SHORT FRAME SYNC OPERATION

The COMBO can utilize either a short frame sync pulse (the same as the TP3020/21 CODECs) or a long frame sync pulse. Upon power initialization, the device assumes a short frame mode. In this mode, both frame sync pulses, FS_X and FS_R, must be one bit clock period long, with timing relationships specified in Figure 2. With FS_X high during a falling edge of BCLK_X, the next rising edge of BCLK_X enables the D_X TRI-STATE output buffer, which will output the sign bit. The following seven rising edges clock out the remaining seven bits, and the next falling edge disables the D_X output. With FS_R high during a falling edge of BCLK_R (BCLK_X in synchronous mode), the next falling edge of BCLK_R latches in the sign bit. The following seven falling edges latch in the seven remaining bits. All devices may utilize the short frame pulse in synchronous or asynchronous operating sync mode.

LONG FRAME SYNC OPERATION

To use the long (TP5116A/56 CODECs) frame mode, both the frame sync pulses, FS_X and FS_R , must be three or more bit clock periods long, with timing relationships specified in Figure 3. Based on the transmit frame sync, FS_X, the COM-BO will sense whether short or long frame sync pulses are being used. For 64 kHz operation, the frame sync pulse must be kept low for a minimum of 160 ns. The D_X TRI-STATE output buffer is enabled with the rising edge of FS_X or the rising edge of BCLK_X , whichever comes later, and the first bit clocked out is the sign bit. The following seven BCLK_X rising edges clock out the remaining seven bits. The D_X output is disabled by the falling BCLK_X edge following the eighth rising edge, or by FS_X going low, whichever comes later. A rising edge on the receive frame sync pulse, FS_R , will cause the PCM data at D_R to be latched in on the next eight falling edges of BCLK_R(BCLK_X in synchronous mode). All devices may utilize the long frame sync pulse in synchronous or asynchronous mode.

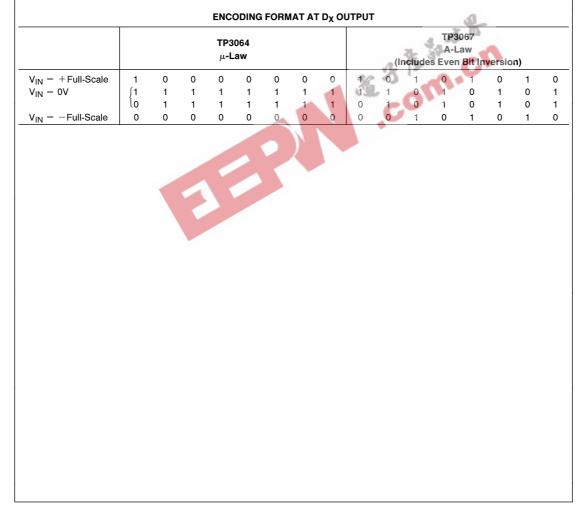
TRANSMIT SECTION

The transmit section input is an operational amplifier with provision for gain adjustment using two external resistors, see *Figure 4*. The low noise and wide bandwidth allow gains in excess of 20 dB across the audio passband to be realized. The op amp drives a unity-gain filter consisting of RC active pre-filter, followed by an eighth order switched-capacitor bandpass filter clocked at 256 kHz. The output of this filter directly drives the encoder sample-and-hold circuit. The A/D is of companding type according to μ -law (TP3064) or A-law (TP3067) coding conventions. A precision voltage reference is trimmed in manufacturing to provide an input overload (t_{MAX}) of nominally 2.5V peak (see

Functional Description (Continued)

table of Transmission Characteristics). The FS_X frame sync pulse controls the sampling of the filter output, and then the successive-approximation encoding cycle begins. The 8-bit code is then loaded into a buffer and shifted out through D_X at the next FS_X pulse. The total encoding delay will be approximately 165 μ s (due to the transmit filter) plus 125 μ s (due to encoding delay), which totals 290 μ s. Any offset voltage due to the filters or comparator is cancelled by sign bit integration.

RECEIVE SECTION


The receive section consists of an expanding DAC which drives a fifth order switched-capacitor low pass filter clocked at 256 kHz. The decoder is A-law (TP3067) or μ -law (TP3064) and the 5th order low pass filter corrects for the sin x/x attenuation due to the 8 kHz sample/hold. The filter is then followed by a 2nd order RC active post-filter with its output at VF_RO. The receive section is unity-gain, but gain can be added by using the power amplifiers. Upon the occurrence of FS_R, the data at the D_R input is clocked in on the falling edge of the next eight BCLK_R (BCLK_X) peri-

ods. At the end of the decoder time slot, the decoding cycle begins, and 10 μ s later the decoder DAC output is updated. The total decoder delay is ~10 μ s (decoder update) plus 110 μ s (filter delay) plus 62.5 μ s (½ frame), which gives approximately 180 μ s.

RECEIVE POWER AMPLIFIERS

Two inverting mode power amplifiers are provided for directly driving a matched line interface transformer. The gain of the first power amplifier can be adjusted to boost the $\pm 2.5V$ peak output signal from the receive filter up to $\pm 3.3V$ peak into an unbalanced 300 Ω load, or $\pm 4.0V$ into an unbalanced 15 k Ω load. The second power amplifier is internally connected in unity-gain inverting mode to give 6 dB of signal gain for balanced loads.

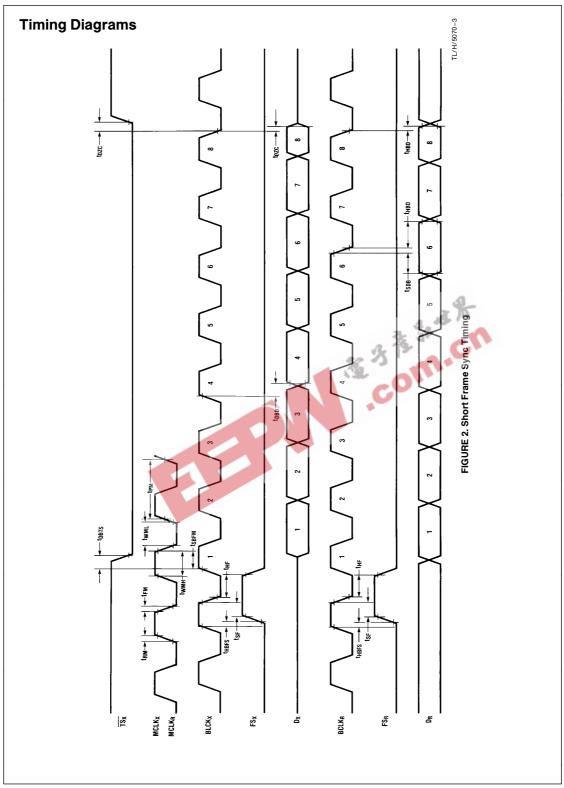
Maximum power transfer to a 600 Ω subscriber line termination is obtained by differentially driving a balanced transformer with a $\sqrt{2}$:1 turns ratio, as shown in *Figure 4*. A total peak power of 15.6 dBm can be delivered to the load plus termination.

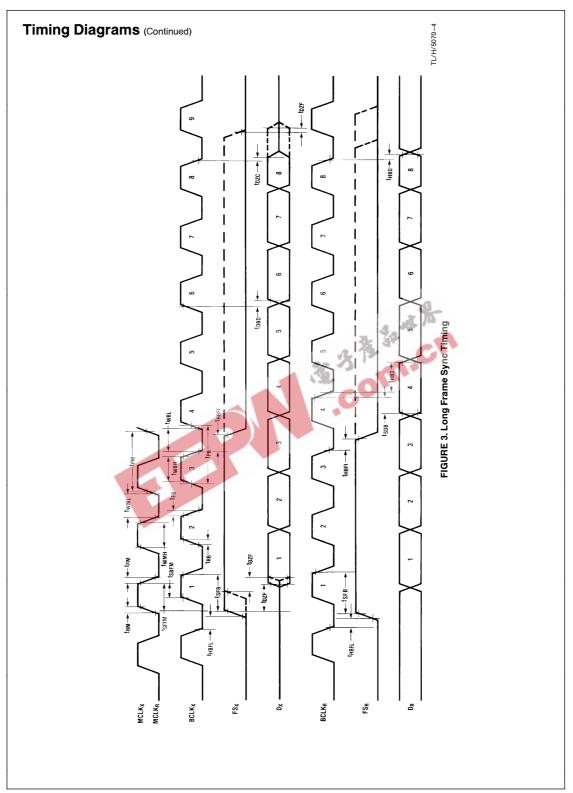
Absolute Maximum Ratings

If Military/Aerospace specif please contact the Nation	• •	Voltage at any Digital Input or Output	V _{CC} +0.3V to GNDA-0.3V
Office/Distributors for availa	bility and specifications.	Operating Temperature Range	-25°C to +125°C
V _{CC} to GNDA	7V	Storage Temperature Range	-65°C to +150°C
V _{BB} to GNDA	-7V	Lead Temp. (Soldering, 10 sec.)	300°C
Voltage at any Analog Input		ESD (Human Body Model) J	1000V
or Output	V_{CC} + 0.3V to V_{BB} - 0.3V	ESD (Human Body Model) N	1500V
		Latch-Up Immunity	100 mA on Any Pin

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5.0V \pm 5\%$, $V_{BB} = -5.0V \pm 5\%$; $T_A = 0^{\circ}$ C to 70°C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GNDA. Typicals specified at $V_{CC} = +5.0V$, $V_{BB} = -5.0V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
POWER	DISSIPATION (ALL DEVICES)					
I _{CC} 0	Power-Down Current	(Note)		0.5	1.5	mA
I _{BB} 0	Power-Down Current	(Note)		0.05	0.3	mA
I _{CC} 1	Active Current	VPI=0V; VF _R O, VPO $^+$ and VPO $^-$ unloaded		7.0	10.0	mA
I _{BB} 1	Active Current	VPI=0V; VF _R O, VPO ⁺ and VPO ⁻ unloaded	10	7.0	10.0	mA
DIGITAL INTERFACE						
V _{IL}	Input Low Voltage	3.12	6		0.6	V
V _{IH}	Input High Voltage		2.2			V
V _{OL}	Output Low Voltage	D_X , $I_L = 3.2 \text{ mA}$ \overline{TS}_X , $I_L = 3.2 \text{ mA}$, Open Drain			0.4 0.4	V V
V _{OH}	Output High Voltage	$D_X, I_H = -3.2 \text{ mA}$	2.4			V
IIL	Input Low Current	GNDA≤V _{IN} ≤V _{IL} , All Digital Inputs	- 10		10	μA
IIH	Input High Current	V _{IH} ≤ V _{IN} ≤ V _{CC}	- 10		10	μA
I _{OZ}	Output Current in High Impedance State (TRI-STATE)	D _X , GNDA≤V _O ≤V _{CC}	- 10		10	μΑ


Note: I_{CC0} and I_{BB0} are measured after first achieving a power-up state.


I _I XA	ITERFACE WITH TRANSMIT INPU	1		Тур	Max	Units	
	ANALOG INTERFACE WITH TRANSMIT INPUT AMPLIFIER (ALL DEVICES)						
D.VA	Input Leakage Current	$-2.5V \le V \le +2.5V$, VF _X I ⁺ or VF _X I ⁻	-200		200	nA	
R _I XA	Input Resistance	$-2.5V{\leq}V{\leq}{+}2.5V,$ VF_XI $^+$ or VF_XI $^-$	10			MΩ	
R _O XA	Output Resistance	Closed Loop, Unity Gain		1	3	Ω	
R _L XA	Load Resistance	GSX	10			kΩ	
C _L XA	Load Capacitance	GSX			50	pF	
V _O XA	Output Dynamic Range	GS _X , R _L \geq 10 k Ω	-2.8		+ 2.8	V	
A _V XA	Voltage Gain	VF _X I ⁺ to GS _X	5000			V/V	
F _U XA	Unity-Gain Bandwidth		1	2		MHz	
V _{OS} XA	Offset Voltage		-20		20	mV	
V _{CM} XA	Common-Mode Voltage	CMRRXA > 60 dB	-2.5		2.5	V	
CMRRXA	Common-Mode Rejection Ratio	DC Test	60	3		dB	
PSRRXA	Power Supply Rejection Ratio	DC Test	60	a p		dB	
ANALOG IN	TERFACE WITH RECEIVE FILTER	R (ALL DEVICES)	3: 5		0		
R _O RF	Output Resistance	Pin VF _R O	72	1	3	Ω	
R _L RF	Load Resistance	VF _R O=±2.5V	10			kΩ	
C _L RF	Load Capacitance	Connect from VF _R O to GNDA	0		25	pF	
VOS _R O	Output DC Offset Voltage	Measure from VF _R O to GNDA	-200		200	mV	
ANALOG IN	TERFACE WITH POWER AMPLIF	ERS (ALL DEVICES)					
IPI	Input Leakage Current	-1.0V≤VPI≤1.0V	- 100		100	nA	
RIPI	Input Resistance	$-1.0V \le VPI \le 1.0V$	10			MΩ	
VIOS	Input Offset Voltage		-25		25	mV	
ROP	Output Resistance	Inverting Unity-Gain at VPO+ or VPO-		1		Ω	
F _C	Unity-Gain Bandwidth	Open Loop (VPO ⁻)		400		kHz	
C _L P	Load Capacitance				100	pF	
GA _P +	Gain from VPO ⁻ to VPO ⁺	$R_L = 600 \Omega \text{ VPO}^+ \text{ to VPO}^-$ Level at VPO $^- = 1.77 \text{ Vrms}$		-1		V/V	
PSRR _P	Power Supply Rejection of V_{CC} or V_{BB}	VPO Connected to VPI 0 kHz-4 kHz 4 kHz-50 kHz	60 36			dB dB	
RLP	Load Resistance	Connect from VPO+ to VPO-	600			Ω	

Γ

See Defir	nitions and Timing Conventions secti	parameters are measured at $V_{OH} = 2.0V$ on for test methods information.				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
1/t _{PM}	Frequency of Master Clock	MCLK _X and MCLK _R		1.536 1.544 2.048		MHz MHz MHz
t _{RM}	Rise Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{FM}	Fall Time of Master Clock	MCLK _X and MCLK _R			50	ns
t _{PB}	Period Bit of Clock		485	488	15725	ns
t _{RB}	Rise Time of Bit Clock	BCLK _X and BCLK _R			50	ns
t _{FB}	Fall Time of Bit Clock	BCLK _X and BCLK _R			50	ns
t _{WMH}	Width of Master Clock High	MCLK _X and MCLK _R	160			ns
t _{WML}	Width of Master Clock Low	MCLK _X and MCLK _R	160			ns
t _{SBFM}	Set-Up Time from $BCLK_X$ High to $MCLK_X$ Falling Edge		100			ns
t _{SFFM}	Set-Up Time from FS_X High to MCLK _X Falling Edge	Long Frame Only	100	2		ns
t _{WBH}	Width of Bit Clock High	3.12	160			ns
t _{WBL}	Width of Bit Clock Low		160			ns
t _{HBFL}	Holding Time from Bit Clock Low to Frame Sync	Long Frame Only	0			ns
t _{HBFS}	Holding Time from Bit Clock High to Frame Sync	Short Frame Only	0			ns
t _{SFB}	Set-Up Time for Frame Sync to Bit Clock Low	Long Frame Only	80			ns
t _{DBD}	Delay Time from BCLK _X High to Data Valid	Load = 150 pF plus 2 LSTTL Loads	0		180	ns
t _{DBTS}	Delay Time to TS _X Low	Load = 150 pF plus 2 LSTTL Loads			140	ns
t _{DZC}	Delay Time from BCLK _X Low to Data Output Disabled		50		165	ns
^t DZF	Delay Time to Valid Data from FS_X or $BCLK_X,$ Whichever Comes Later	C _L =0 pF to 150 pF	20		165	ns
t _{SDB}	Set-Up Time from D_R Valid to $BCLK_{R/X}$ Low		50			ns
t _{HBD}	Hold Time from $BCLK_{R/X}$ Low to D_R Invalid		50			ns
t _{SF}	Set-Up Time from $FS_{X/R}$ to BCLK _{X/R} Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	50			ns
t _{HF}	Hold Time from $BCLK_{X/R}$ Low to $FS_{X/R}$ Low	Short Frame Sync Pulse (1 Bit Clock Period Long)	100			ns
t _{HBFI}	Hold Time from 3rd Period of Bit Clock Low to Frame Sync (FS _X or FS _R)	Long Frame Sync Pulse (from 3 to 8 Bit Clock Periods Long)	100			ns
t _{WFL}	Minimum Width of the Frame	64k Bit/s Operating Mode	160			ns

7

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
AMPLITU	IDE RESPONSE	r				
	Absolute Levels (Definition of nominal gain)	Nominal 0 dBm0 Level is 4 dBm (600Ω) 0 dBm0		1.2276		Vrms
t _{MAX}	Virtual Decision Value Defined per CCITT Rec. G711	Max Transmit Overload Level TP3064 (3.17 dBm0) TP3067 (3.14 dBm0)		2.501 2.492		V _{PK} V _{PK}
G _{XA}	Transmit Gain, Absolute	$T_{A} = 25^{\circ}C, V_{CC} = 5V, V_{BB} = -5V$	-0.15		0.15	dB
G _{XR}	Transmit Gain, Relative to G _{XA}	f = 16 Hz f = 50 Hz f = 60 Hz f = 200 Hz $f = 300 Hz \cdot 3000 Hz$ f = 3300 Hz f = 3400 Hz f = 4000 Hz f = 4600 Hz and Up, Measure Response from 0 Hz to 4000 Hz	- 1.8 - 0.15 - 0.35 - 0.7	and	-40 -30 -26 -0.1 0.15 0.05 0 -14 -32	dB dB dB dB dB dB dB dB dB dB
G _{XAT}	Absolute Transmit Gain Variation with Temperature	Relative to G _{XA}	-0.1	C	0.1	dB
G _{XAV}	Absolute Transmit Gain Variation with Supply Voltage	Relative to G _{XA}	-0.05		0.05	dB
G _{XRL}	Transmit Gain Variations with Level	Sinusoidal Test Method Reference Level = -10 dBm0 VF _X I ⁺ = -40 dBm0 to $+3 \text{ dBm0}$ VF _X I ⁺ = -50 dBm0 to -40 dBm0 VF _X I ⁺ = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{RA}	Receive Gain, Absolute	$\label{eq:transform} \begin{array}{l} T_A = 25^\circ C, \ V_{CC} = 5V, \ V_{BB} = -5V \\ Input = Digital \ Code \ Sequence \\ for \ 0 \ dBm0 \ Signal \end{array}$	-0.15		0.15	dB
G _{RR}	Receive Gain, Relative to G _{RA}	f=0 Hz to 3000 Hz f=3300 Hz f=3400 Hz f=4000 Hz	-0.15 -0.35 -0.7		0.15 0.05 0 - 14	dB dB dB dB
G _{RAT}	Absolute Receive Gain Variation with Temperature	Relative to G _{RA}	-0.1		0.1	dB
G _{RAV}	Absolute Receive Gain Variation with Supply Voltage	Relative to G _{RA}	-0.05		0.05	dB
G _{RRL}	Receive Gain Variations with Level	Sinusoidal Test Method; Reference Input PCM Code Corresponds to an Ideally Encoded – 10 dBm0 Signal PCM Level = -40 dBm0 to +3 dBm0 PCM Level = -50 dBm0 to -40 dBm0 PCM Level = -55 dBm0 to -50 dBm0	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
V _{RO}	Receive Filter Output at VF _R O	RL=10 kΩ	-2.5		2.5	v

Γ

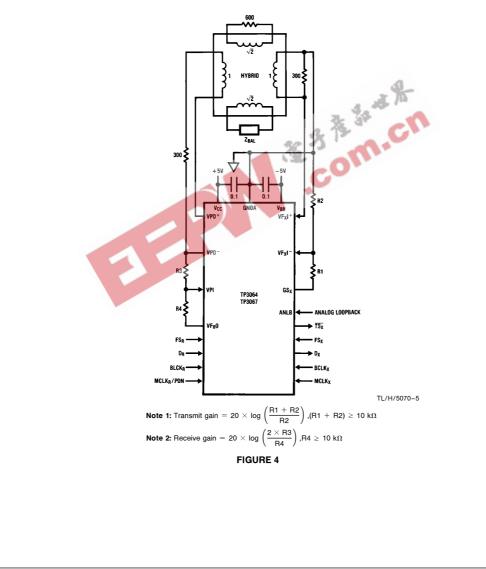
0°C to 70 productio	9°C by correlation with 100% electricant n tests and/or product design and cha	characters are guaranteed for V _{CC} = + al testing at T _A = 25°C. All other limits racterization. GNDA = 0V, f = 1.02 kHz s specified at V _{CC} = +5.0V, V _{BB} = -6	s are assu , V _{IN} = 0	red by co dbm0, tra	orrelation	with other
Symbol	Parameter	Conditions	Min	Тур	Max	Units
ENVELOP	PE DELAY DISTORTION WITH FREQU	UENCY				
D _{XA}	Transmit Delay, Absolute	f=1600 Hz		290	315	μs
D _{XR}	Transmit Delay, Relative to D _{XA}			195 120 50 20 55 80 130	220 145 75 40 75 105 155	μs μs μs μs μs μs μs
D _{RA}	Receive Delay, Absolute	f=1600 Hz		180	200	μs
D _{RR}	Receive Delay, Relative to D _{RA}	f=500 Hz - 1000 Hz f=1000 Hz - 1600 Hz f=1600 Hz - 2600 Hz f=2600 Hz - 2800 Hz f=2800 Hz - 3000 Hz	-40 -30	-25 -20 70 100 145	90 125 175	μs μs μs μs μs
NOISE				1		,
N _{XC}	Transmit Noise, C Message Weighted	TP3064 (Note 1)	2	12	15	dBrnC0
N _{XP}	Transmit Noise, Psophometric Weighted	TP3067 (Note 1)	0.	-74	-67	dBm0p
N _{RC}	Receive Noise, C Message Weighted	PCM Code Equals Alternating Positive and Negative Zero TP3064		8	11	dBrnCC
N _{RP}	Receive Noise, Psophometric Weighted	PCM Code Equals Positive Zero TP3067		-82	-79	dBm0p
N _{RS}	Noise, Single Frequency	f = 0 kHz to 100 kHz, Loop Around Measurement, VF _X I + = 0 Vrms			-53	dBm0
$PPSR_{X}$	Positive Power Supply Rejection, Transmit	V _{CC} =5.0 V _{DC} +100 mVrms f=0 kHz-50 kHz (Note 2)	40			dBC
$NPSR_{X}$	Negative Power Supply Rejection, Transmit	$V_{BB} = -5.0 V_{DC} + 100 \text{ mVrms}$ f = 0 kHz - 50 kHz (Note 2)	40			dBC
PPSR _R	Positive Power Supply Rejection, Receive	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ \mbox{V}_{CC} = 5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{Measure VF}_{R}O \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{kHz} - 50 \ \mbox{kHz} \end{array}$	38 25			dBC dB
NPSR _R	Negative Power Supply Rejection, Receive	$\begin{array}{l} \mbox{PCM Code Equals Positive Zero} \\ \mbox{V}_{BB} = -5.0 \ \mbox{V}_{DC} + 100 \ \mbox{mVrms} \\ \mbox{Measure VF}_{R}O \\ \mbox{f} = 0 \ \mbox{Hz} - 4000 \ \mbox{Hz} \\ \mbox{f} = 4 \ \mbox{Hz} - 25 \ \mbox{Hz} \\ \mbox{f} = 25 \ \mbox{Hz} - 50 \ \mbox{Hz} \\ \end{array}$	40 40 36			dBC dB dB
SOS	Spurious Out-of-Band Signals at the Channel Output	0 dBm0, 300 Hz – 3400 Hz Input PCM Code Applied at DR Measure Individual Image Signals at VF _R O 4600 Hz–7600 Hz 7600 Hz–8400 Hz 8400 Hz–100,000 Hz			- 32 -40 - 32	dB dB dB

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DISTORT	ION					
STD _{X,} STD _R	Signal to Total Distortion Transmit or Receive Half-Channel	Sinusoidal Test Method (Note 3) Level = 3.0 dBm0 = 0 dBm0 to - 30 dBm0 = -40 dBm0 XMT RCV = -55 dBm0 XMT RCV	33 36 29 30 14 15			dBC dBC dBC dBC dBC dBC dBC
SFD _X	Single Frequency Distortion, Transmit				-46	dB
SFD _R	Single Frequency Distortion, Receive				-46	dB
IMD	Intermodulation Distortion	Loop Around Measurement, $VF_X ^+ = -4 \text{ dBm0 to } -21 \text{ dBm0, Two}$ Frequencies in the Range 300 Hz -3400 Hz	1.5	St.	-41	dB
CROSSTA	ALK	3.	5.			
CT _{X-R}	Transmit to Receive Crosstalk	f = 300 Hz - 3000 Hz $D_R = \text{Quiet PCM Code}$	5	-90	-75	dB
CT _{R-X}	Receive to Transmit Crosstalk	f=300 Hz-3000 Hz, VF _X I=0V (Note 2)		-90	-70	dB
POWER A	AMPLIFIERS					
V _O PA	Maximum 0 dBm0 Level	Balanced Load, RL Connected Between				
	(Better than ±0.1 dB Linearity over	VPO ⁺ and VPO ⁻ .				1/
	the Range $-10 \text{ dBm0 to } +3 \text{ dBm0}$)	$R_{L} = 600\Omega$ $R_{L} = 1200\Omega$	3.3 3.5			Vrms Vrms
S/D _P	Signal/Distortion	$R_{\rm I} = 600\Omega$	50			dB
Note 1: Me Note 2: PP	asured by extrapolation from the distortion test res SR _X , NPSR _X , and CT_{R-X} are measured with a -5	ult at -50 dBm0 .				

Applications Information

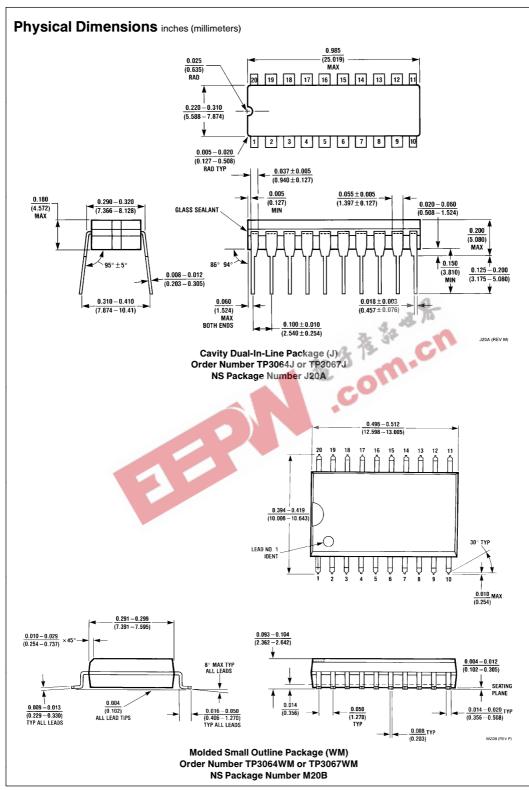
POWER SUPPLIES

While the pins of the TP3060 family are well protected against electrical misuse, it is recommended that the standard CMOS practice be followed, ensuring that ground is connected to the device before any other connections are made. In applications where the printed circuit board may be plugged into a "hot" socket with power and clocks already present, an extra long ground pin in the connector should be used.

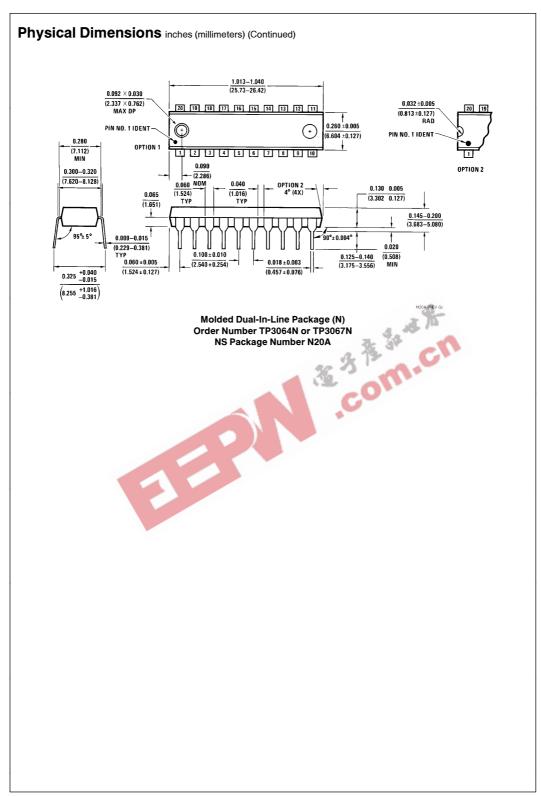

All ground connections to each device should meet at a common point as close as possible to the GNDA pin. This

Typical Asynchronous Application

minimizes the interaction of ground return currents flowing through a common bus impedance. 0.1 μF supply decoupling capacitors should be connected from this common ground point to V_{CC} and V_{BB}, as close to the device as possible.


For best performance, the ground point of each CODEC/ FILTER on a card should be connected to a common card ground in "STAR" formation, rather than via a ground bus. This common ground point should be decoupled to V_{CC} and V_{BB} with 10 μF capacitors.

Note: See Application Note 370 for further details



Definitions	and Timing Conventions		
DEFINITIONS		TIMING CONVENT	TIONS
V _{IH}	V _{IH} is the d.c. input level above which an input level is guaranteed to appear		of this timing specification, the following
	as a logical one. This parameter is to be measured by performing a functional test at reduced clock	Input Signals	All input signals may be characterized as: $V_L=0.4V,V_H=2.4V,t_R<$ 10 ns, $t_F<$ 10 ns.
	speeds and nominal timing, (i.e. not minimum setup and hold times or output strobes), with the high level of all driving signals set to V _{IH} and	Period	The period of clock signal is designated as t_{Pxx} where xx represents the mnemonic of the clock signal being specified.
M	maximum supply voltages applied to the device	Rise Time	Rise times are designated as t _{Ryy} , where yy represents a mnemonic of
V _{IL}	V _{IL} is the d.c. input level below which an input level is guaranteed to appear as a logical zero to the device. This		the signal whose rise time is being specified. t_{Ryy} is measured from V_{IL} to $V_{IH}. \label{eq:VIH}$
	parameter is measured in the same manner as V_{IH} but with all driving signal low levels set to V_{IL} and minimum supply voltages applied to the device.	Fall Time	Fall times are designated as t_{Fyy} , where yy represents a mnemonic of the signal whose fall time is being specified. t_{Fyy} is measured from V_{IH} to
V _{OH}	V _{OH} is the minimum d.c. output level to which an output placed in a logical one state will converge when loaded at the maximum specified load current.	Pulse Width High	V_{IL} . The high pulse width is designated as t_{WzzH} , where zz represents the mnemonic of the input or output signal
V _{OL}	V _{OL} is the maximum d.c. output level to which an output placed in a logical zero state will converge when loaded at the maximum specified load current.	Pulse Width Low	whose pulse width is being specified. High pulse widths are measured from V_{IH} to V_{IH} . The low pulse width is designated as
Threshold Region	The threshold region is the range of input voltages between V_{IL} and V_{IH} .	1 A.	t _{WzzL} , where zz represents the mnemonic of the input or output signal whose pulse width is being specified.
Valid Signal	A signal is Valid if it is in one of the valid logic states, (i.e. above V _{IH} or		Low pulse widths are measured from $V_{\rm IL}$ to $V_{\rm IL}$.
	below V _{IL}). In timing specifiations, a signal is deemed valid at the instant it enters a valid state.	Setup Time	Setup times are designated as t _{Swwxx} , where ww represents the mnemonic of the input signal whose setup time is
Invalid Signal	A signal is Invalid if it is not in a valid logic state, i.e, when it is in in the threshold region between V _{IL} and V _{IH} . In timing specifications, a signal is		being specified relative to a clock or strobe input represented by mnemonic xx. Setup times are measured from the ww Valid to xx Invalid.
	deemed Invalid at the instant it enters the threshold region.	Hold Time	Hold times are designated as t _{Hxxww} , where ww represents the mnemonic of the input signal whose hold time is
			being specified relative to a clock or strobe input represented by mnemonic xx. Hold times are measured from xx
		Delay Time	Valid to ww Invalid. Delay times are designated as t _{Dxxyy} Hi to Low, where xx represents the mnemonic of the input reference
			signal and yy represents the mnemonic of the output signal whose timing is being specified relative to xx.
			The mnemonic may optionally be terminated by an H or L to specify the high going or low going transition of the output signal. Maximum delay
			times are measured from xx Valid to yy Valid. Minimum delay times are measured from xx Valid to yy Invalid.
			This parameter is tested under the load conditions specified in the Conditions column of the Timing Specifications section of this data
			sheet.

