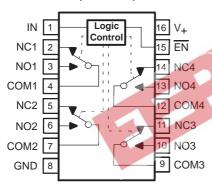


TS3A5018 $10-\Omega$ QUAD SPDT ANALOG SWITCH

SCDS189 - JANUARY 2005


Description

The TS3A5018 is a quad single-pole double-throw (SPDT) analog switch that is designed to operate from 2.3 V to 3.6 V. This device can handle both digital and analog signals, and signals up to V_{+} can be transmitted in either direction.

Applications

- Sample-and-Hold Circuit
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits

SOIC, SSOP, TSSOP, OR TVSOP PACKAGE (TOP VIEW)

FUNCTION TABLE

ĒN	IN	NO TO COM, COM TO NO	NC TO COM, COM TO NC
L	L	OFF	ON
L	Н	ON	OFF
Н	Х	OFF	OFF

Features

- Low ON-State Resistance (10 Ω)
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 2.3-V to 3.6-V Single-Supply Operation
- Control Inputs are 5-V Tolerant
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

Summary of Characteristics

 $V_{+} = 3.3 \text{ V}, T_{A} = 25^{\circ}\text{C}$

Configuration	Quad Single Pole Double Throw (4 × SPDT)
Number of channels	4
ON-state resistance (ron)	7 Ω
ON-state resistance match (Δr _{on})	0.3 Ω
ON-state resistance flatness (ron(flat))	5 Ω
Turn-on/turn-of time (ton/toff)	3.5 ns/2 ns
Charge injection (Q _C)	2 pC
Bandwidth (BW)	300 MHz
OFF isolation (OISO)	-48 dB at 10 MHz
Crosstalk (X _{TALK})	-48 dB at 10 MHz
Total harmonic distortion (THD)	0.2%
Leakage current (ICOM(OFF))	±5 μA
Power-supply current (I ₊)	2.5 μΑ
Package option	16-pin SOIC, SSOP, TSSOP, or TVSOP

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TS3A5018 10-Ω QUAD SPDT ANALOG SWITCH

TEXAS INSTRUMENTS

SCDS189 - JANUARY 2005

ORDERING INFORMATION

TA	PACKAGE(1)		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - D	Tube	TS3A5018D	TS3A5018
	30IC - D	Tape and reel	TS3A5018DR	133A3016
-40°C to 85°C	SSOP (QSOP) - DBQ	Tape and reel	TS3A5018DBQR	YA018
-40°C 10 85°C	TSSOP - PW	Tube	TS3A5018PW	VA 04 0
	13304 - 444	Tape and reel	TS3A5018PWR	YA018
	TVSOP - DGV	Tape and reel	TS3A5018DGVR	YA018

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Absolute Minimum and Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
٧+	Supply voltage range(3)		-0.5	4.6	V
V _{NC} , V _{NO} , V _{COM}	Analog voltage range(3)(4)	a.	-0.5	7	V
lΚ	Analog port diode current	V _{NC} , V _{NO} , V _{COM} < 0	-50		mA
I _{NC,} I _{NO,} I _{COM}	On-state switch current	V_{NC} , V_{NO} , $V_{COM} = 0$ to 7 V	-64	64	mA
٧ _I	Digital input voltage range(3)(4)	130	-0.5	7	V
lιΚ	Digital input clamp current	V _I < 0	-50		mA
l ₊	Continuous current through V ₊		-100	100	mA
IGND	Continuous current through GND		-100	100	mA
		D package		73	
_	Deal and the small investigation (5)	DBQ package		90	00.004
$AL\theta$	Package thermal impedance ⁽⁵⁾	DGV package	120		°C/W
		PW package		108	
T _{stq}	Storage temperature range	•	-65	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

⁽²⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽³⁾ All voltages are with respect to ground, unless otherwise specified.

⁽⁴⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽⁵⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

TS3A5018 10- Ω QUAD SPDT ANALOG SWITCH

SCDS189 - JANUARY 2005

Electrical Characteristics for 3.3-V Supply⁽¹⁾ $V_+ = 3 \text{ V to } 3.6 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}$

SYMBOL	TEST CONDITIONS		TA	٧+	MIN	TYP	MAX	UNIT
			•		•			•
V _{COM} , V _{NC} ,V _{NO}					0		٧+	٧
r _{on}	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_+,$ $I_{COM} = -32 \text{ mA},$	Switch ON, See Figure 13	25°C Full	3 V		7	10 12	Ω
Ar	V_{NC} or $V_{NO} = 2.1 \text{ V}$,	Switch ON,	25°C	3 \/		0.3	0.8	Ω
△ion	$I_{COM} = -32 \text{ mA},$	See Figure 13	Full	3 V			1	32
ron(flat)	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_{+},$	Switch ON,	25°C	3 V		5	7	Ω
on(nat)	ICOM = -32 IIIA,	See Figure 13	Full				8	
	V_{NC} or $V_{NO} = 1 \text{ V}$, $V_{COM} = 3 \text{ V}$,	Switch OFF,	25°C	3.6 V	-0.1	0.05	0.1	
	V_{NC} or $V_{NO} = 3 \text{ V}$, $V_{COM} = 1 \text{ V}$,	See Figure 14	Full	0.0 1	-0.2		0.2	μА
INC(OFF)	V_{NC} or $V_{NO} = 0$ to 3.6 V, $V_{COM} = 3.6$ V to 0,	Switch OFF, See Figure 14	25°C	0 V	-2	0.05	2	
	V _{NC} or V _{NO} = 3.6 V to 0, V _{COM} = 0 to 3.6 V,		Full		-10		10	
	$V_{COM} = 1 \text{ V}, V_{NC} \text{ or } V_{NO} = 3 \text{ V},$	Switch OFF,	25°C	261/	-0.1	0.05	0.1	
	$V_{COM} = 3 \text{ V}, V_{NC} \text{ or } V_{NO} = 3 \text{ V},$	See Figure 14	Full	3.0 V	-0.2		0.2	
ICOM(OFF)	V _{COM} = 0 to 3.6 V, V _{NC} or V _{NO} = 3.6 V to 0,	Switch OFF,	25°C	0.1/	-2	0.05	2	μΑ
	V _{COM} = 3.6 V to 0, V _{NC} or V _{NO} = 0 to 3.6 V,	See Figure 14	·		-10		10	
INC(ON)	V_{NC} or $V_{NO} = 1$ V, $V_{COM} = Open$,	Switch ON,	25°C	0.01/	-0.1	0.05	0.1	
INO(ON)	V_{NC} or $V_{NO} = 3 \text{ V}$, $V_{COM} = \text{Open}$,	See Figure 15	Full	3.6 V	-0.2		0.2	μΑ
	$V_{COM} = 1 \text{ V}, V_{NC} \text{ or } V_{NO} = \text{Open},$	Switch ON,	25°C	0.01/	-0.1	0.05	0.1	
ICOM(ON)	$V_{COM} = 3 \text{ V}, V_{NC} \text{ or } V_{NO} = \text{Open},$	See Figure 15	Full	3.6 V	-0.2		0.2	μА
uts (IN, EN)	(2)							
VIH			Full		2		٧+	V
V _{IL}			Full		0		0.8	V
					-1	0.05		
	VCOM, VNC, VNO ron Δron INC(OFF) INC(OFF) INO(OFF) INC(ON) INO(ON) ICOM(ON) Uts (IN, EN) VIH	VCOM, VNC, VNO ron 0 ≤ (VNC or VNO) ≤ V+, ICOM = -32 mA, VNC or VNO = 2.1 V, ICOM = -32 mA, ron(flat) 0 ≤ (VNC or VNO) ≤ V+, ICOM = -32 mA, VNC or VNO = 1 V, VCOM = 3 V, or VNC or VNO = 3 V, VCOM = 1 V, VCOM = 1 V, VCOM = 3 V, OR VNC or VNO = 0 to 3.6 V, VCOM = 0 to 3.6 V, VCOM = 0 to 3.6 V, VCOM = 0 to 3.6 V, OR	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VCOM- VNC, VNO VNC, VNO Separate VNC, VNO Separate VNC, VNO Separate VNC, VNO Separate VNC or VNO Separate Separate	VCOM.	VCOM- VNC, VNO VCOM- IcOM = −32 mA, Switch ON, See Figure 13 25°C Full 3 V 7 Δron VNC or VNO = 2.1 V, ICOM = −32 mA, Switch ON, See Figure 13 25°C Full 3 V 0.3 γοη (flat) 0 ≤ (VNC or VNO) ≤ V+, ICOM = −32 mA, Switch ON, See Figure 13 25°C Full 3 V VNC or VNO = 1 V, VCOM = 3 V, Or Or VNO = 3 V, VCOM = 1 V, VNC or VNO = 3 V, VCOM = 1 V, VCOM = 3.6 V to 0, VCOM = 3.6 V to 0, VCOM = 0 to 3.6 V, VCOM = 0 to 3.6 V, VCOM = 3 V, VCO OR See Figure 14 25°C Full 3.6 V −0.1 0.05 VCOM = 1 V, VNC or VNO = 3 V, VCOM = 3 V, VNC or VNO = 3 V, VCOM = 3 V, VNC or VNO = 3 V, VCOM = 3 V, VNC or VNO = 3 V, VCOM = 3 V, VNC or VNO = 3 V, VCOM = 3 V, VNC or VNO = 3 V, VNO = 0 to 3.6 V, VNC or VNO = 3 V, VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, or VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, Or VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, or VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, or VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, Or VNO = 3 V, VNC or VNO = 0 Pen, VNO = 0 to 3.6 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VNO = 0 Pen, VCOM = 3 V, VNC or VN	VCOM, VNC, VNO VCOM, VNC, VNO 0 V+ ron 0 ≤ (VNC or VNO) ≤ V+, ICOM = -32 mA, Switch ON, See Figure 13 25°C Full 3 V 7 10 Δron VNC or VNO = 2.1 V, ICOM = -32 mA, Switch ON, See Figure 13 25°C Full 3 V 0.3 0.8 ron(flat) 0 ≤ (VNC or VNO) ≤ V+, ICOM = -32 mA, Switch ON, See Figure 13 25°C Full 3 V 3 V 5 7 NCOM = -32 mA, Switch ON, See Figure 13 Switch OFF, Full 3 V -0.1 0.05 0.1 8 NCOM = -32 mA, Switch OFF, See Figure 13 Switch OFF, Full 3 V -0.1 0.05 0.1 8 NCOM = -32 mA, Switch OFF, See Figure 14 Full 3 V -0.1 0.05 0.1 8 NCOM = -32 mA, Switch OFF, See Figure 14 Full 3 V -0.1 0.05 0.1 -0.1 0.05 0.1 -0.1 0.05 0.1 -0.1 0.05 0.1 -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 <

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽²⁾ All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

TS3A5018 10- Ω QUAD SPDT ANALOG SWITCH

SCDS189 – JANUARY 2005

Electrical Characteristics for 3.3-V Supply⁽¹⁾ (continued) $V_+ = 3 \text{ V to } 3.6 \text{ V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	ITIONS	TA	٧+	MIN	TYP	MAX	UNIT
Dynamic	•			•	•				
Turn-on time	ton	$V_{COM} = 2 V,$ $R_{I} = 300 \Omega,$	C _L = 35 pF, See Figure 17	25°C Full	3.3 V 3 V to 3.6 V	2.5 2.5	3.5	8	ns
Turn-off time	tOFF	$V_{COM} = 2 V$, $R_{I} = 300 \Omega$,	C _L = 35 pF, See Figure 17	25°C Full	3.3 V 3 V to 3.6 V	0.5	2	6.5	ns
Charge injection	QC	V _{GEN} = 0, R _{GEN} = 0 C _L = 0.1 nF,	See Figure 22	25°C	3.3 V		2		рС
NC, NO OFF capacitance	C _{NC(OFF)} C _{NO(ON)}	V _{NC} or V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		4.5		pF
COM OFF capacitance	CCOM(OFF)	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		9		pF
NC, NO ON capacitance	C _{NC(ON)} C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	3.3 V		16		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	3.3 V		16		pF
Digital input capacitance	Cl	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	3.3 V		3		pF
Bandwidth	BW	R_L = 50 Ω, Switch ON,	See Figure 18	25°C	3.3 V		300		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 10 MHz,	Switch OFF, See Figure 19	25°C	3.3 V		-48		dB
Crosstalk	XTALK	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 20	25°C	3.3 V		-48		dB
Crosstalk Adjacent	XTALK(ADJ)	$R_L = 50 \Omega$, $f = 10 MHz$,	Switch ON, See Figure 21	25°C	3.3 V		-81		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 23	25°C	3.3 V		0.21		%
Supply	•				•				
Positive supply current	I ₊	$V_I = V_+$ or GND,	Switch ON or OFF	25°C Full	3.6 V		2.5	7 10	μΑ

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TS3A5018 $10-\Omega$ QUAD SPDT ANALOG SWITCH

SCDS189 - JANUARY 2005

Electrical Characteristics for 2.5-V Supply⁽¹⁾

 $V_{+} = 2.3 \text{ V to } 2.7 \text{ V}, T_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}$

PARAMETER	SYMBOL	TEST CONDITIONS		TA	٧+	MIN	TYP	MAX	UNIT
Analog Switch	•								
Analog signal range	VCOM, VNC, VNO					0		٧+	V
ON-state resistance	r _{on}	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See Figure 13	25°C Full	2.3 V		12	20 22	Ω
ON-state resistance match	Ar	V_{NC} or $V_{NO} = 1.6 V$,	Switch ON,	25°C	2.3 V		0.3	1	Ω
between channels	Δr _{on}	I _{COM} = -24 mA,	See Figure 13	Full	2.5 V			2	52
ON-state resistance	r (f) - ()	$0 \le (V_{NC} \text{ or } V_{NO}) \le V_+,$	Switch ON,	25°C	2.3 V		14	18	Ω
flatness	ron(flat)	$I_{COM} = -24 \text{ mA},$	See Figure 13	Full	2.5 V			20	52
		V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = 2.2 \text{ V}$,	Switch OFF,	25°C	2.7 V	-0.1	0.05	0.1	
NC, NO		V_{NC} or $V_{NO} = 2.2 \text{ V}, V_{COM} = 0.5 \text{ V},$	See Figure 14	Full	2.7 V	-0.2		0.2	
OFF leakage current INC(OFF),	V _{NC} or V _{NO} = 0 to 3.6 V, V _{COM} = 3.6 V to 0,	Switch OFF,	25°C	O V	-2	0.05	2	μА	
	or V _{NC} or V _{NO} = 3.6 V to 0, V _{COM} = 0 See Figure 14 to 3.6 V,	Full	UV	-10		10			
		$V_{COM} = 0.5 \text{ V}, V_{NC} \text{ or } V_{NO} = 2.2 \text{ V},$	Switch OFF,	25°C	2.7 V	-0.1	0.05	0.1	
COM OFF leakage	loor your	$V_{COM} = 2.2 \text{ V}, V_{NC} \text{ or } V_{NO} = 0.5 \text{ V},$	See Figure 14	Full	2.7 V	-0.2		0.2	μА
current	ICOM(OFF)	$V_{COM} = 0 \text{ to } 3.6 \text{ V}, V_{NC} = 3.6 \text{ V to } 0,$	Switch OFF,	25°C	0 V	-2	0.05	2	μΑ
		$V_{COM} = 3.6 \text{ V to } 0, V_{NC} = 0 \text{ to } 3.6 \text{ V},$	See Figure 14	Full	0 0	-10		10	
NC, NO ON leakage	INC(ON)	V_{NC} or $V_{NO} = 0.5 \text{ V}$, $V_{COM} = \text{Open}$,	Switch ON,	25°C	2.7 V	-0.1	0.05	0.1	Δ
current	INO(ON)	V_{NC} or $V_{NO} = 2.2 \text{ V}$, $V_{COM} = \text{Open}$,	See Figure 15	Full	Z.1 V	-0.2		0.2	μΑ
COM		$V_{COM} = 0.5 \text{ V}, V_{NC} \text{ or } V_{NO} = \text{Open},$	Switch ON,	25°C	0.71/	-0.1	0.05	0.1	
ON leakage ICOM(ON) current		$V_{COM} = 2.2 \text{ V}, V_{NC} \text{ or } V_{NO} = \text{Open},$	See Figure 15	Full	2.7 V	-0.2		0.2	μΑ
Digital Control Inp	outs (IN, EN)	(2)							
Input logic high	VIH			Full		1.7		٧+	V
Input logic low	V _{IL}			Full		0		0.7	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	2.7 V	-0.1 -1	0.05	0.1	μΑ

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽²⁾ All unused digital inputs of the device must be held at V₊ or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

TS3A5018 10- Ω QUAD SPDT ANALOG SWITCH

SCDS189 – JANUARY 2005

Electrical Characteristics for 2.5-V Supply⁽¹⁾ (continued) $V_+ = 2.3 \text{ V}$ to 2.7 V, $T_A = -40 ^{\circ}\text{C}$ to 85°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	DITIONS	T_{A}	V ₊	MIN	TYP	MAX	UNIT
Dynamic									
Turn-on time	ton	V _{COM} = 1.5 V,	C _L = 35 pF,	25°C	2.5 V	2.5	5	9.5	ns
Tairi on time	tON	$R_L = 300 \Omega$,	See Figure 17	Full	2.3 V to 2.7 V	2.5		10.5	115
Turn-off time	tOFF	V _{COM} = 1.5 V,	$C_L = 35 \text{ pF},$	25°C	2.5 V	0.5	3	7.5	ns
	-011	$R_L = 300 \Omega$,	See Figure 17	Full	2.3 V to 2.7 V	0.5		9	
Charge injection	QC	V _{GEN} = 0, R _{GEN} = 0 C _L = 0.1 nF,	See Figure 22	25°C	2.5 V		1		рC
NC, NO OFF capacitance	C _{NC(OFF)} C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		3		pF
COM OFF capacitance	C _{COM} (OFF)	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		9		pF
NC, NO ON capacitance	C _{NC(ON)} C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	2.5 V		16		pF
COM ON capacitance	C _{COM} (ON)	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	2.5 V		16		pF
Digital input capacitance	Cl	$V_{I} = V_{+}$ or GND,	See Figure 16	25°C	2.5 V		3		pF
Bandwidth	BW	R_L = 50 Ω, Switch ON,	See Figure 18	25°C	2.5 V		300		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $f = 10 MHz$,	Switch OFF, See Figure 19	25°C	2.5 V		-48		dB
Crosstalk	XTALK	$R_L = 50 \Omega$, $f = 10 MHz$,	Switch ON, See Figure 20	25°C	2.5 V		-48		dB
Crosstalk Adjacent	XTALK(ADJ)	$R_L = 50 \Omega$, f = 10 MHz,	Switch ON, See Figure 21	25°C	3.3 V		-81		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 23	25°C	2.5 V		0.33		%
Supply									
Positive supply	1	$V_I = V_+$ or GND,	Switch ON or OFF	25°C	2.7 V		2.5	7	μА
current	l ₊	$v_1 = v_+ \cup i \cup i \cup i \cup j$	SWILCH ON OF OFF	Full	Z./ V			10	μΑ

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

TYPICAL PERFORMANCE

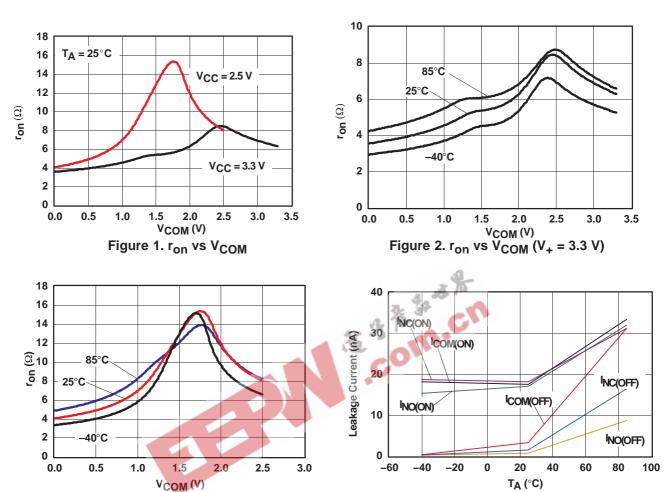


Figure 3. r_{on} vs V_{COM} (V₊ = 3.3 V)

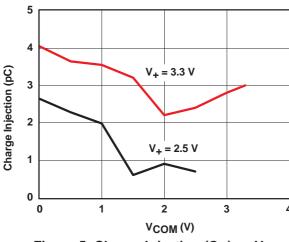
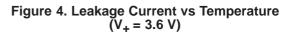



Figure 5. Charge-Injection (Q_C) vs V_{COM}

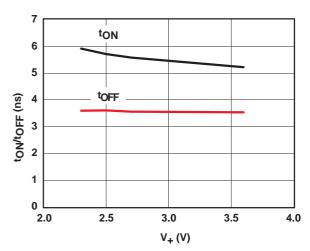
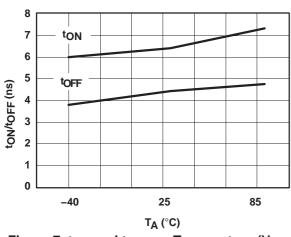



Figure 6. toN and toFF vs Supply Voltage

TYPICAL PERFORMANCE

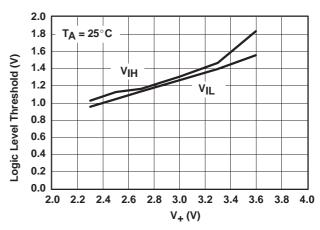
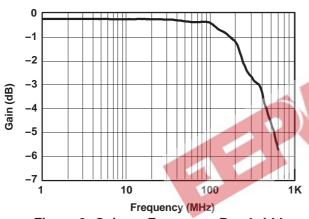
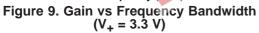




Figure 7. t_{ON} and t_{OFF} vs Temperature (V₊ = 5 V)

Figure 8. Logic-Level Threshold vs V₊

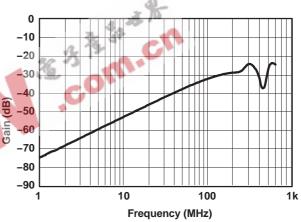


Figure 10. OFF Isolation vs Frequency $(V_+ = 3.3 \text{ V})$

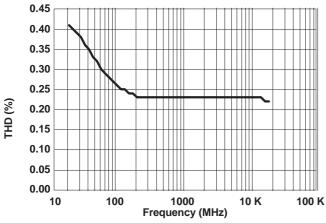


Figure 11. Total Harmonic Distortion vs Frequency

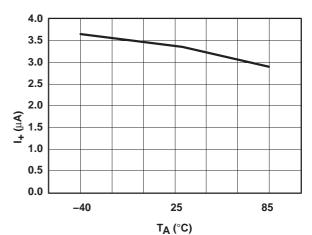


Figure 12. Power-Supply Current vs Temperature (V₊ = 3.3 V)

TS3A5018 $10-\Omega$ QUAD SPDT ANALOG SWITCH

SCDS189 – JANUARY 2005

PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION				
1	IN	Digital control pin to select between NC and NO				
2	NC1	Normally closed				
3	NO1	Normally open				
4	COM1	Common				
5	NC2	Normally closed				
6	NO2	Normally open				
7	COM2	Common				
8	GND	Digital ground				
9	COM3	Common				
10	NO3	Normally open				
11	NC3	Normally closed				
12	COM4	Common				
13	NO4	Normally open				
14	NC4	Normally closed				
15	EN	Chip Enable (active low)				
16	V ₊	Power supply				
16 V ₊ Power supply						

SCDS189 – JANUARY 2005

PARAMETER DESCRIPTION

INO(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state	SYMBOL	DESCRIPTION
VNC Voltage at NC VNO Voltage at NO fon Resistance between COM and NC or NO ports when the channel is ON Aron Difference of ron between channels in a specific device fon(flat) Difference between the maximum and minimum value of ron in a channel over the specified range of conditions INC(OFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state INC(ON) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state INO(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state INO(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open ICOM(ON) Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (NC or NO) open VIH Minimum input voltage for logic high for the control input (IN, EN) VIL Maximum input voltage for logic low for the control input (IN, EN) VI Voltage at the control input (IN, EN) Input (IN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delabetween the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OF	Vсом	Voltage at COM
VNO Voltage at NO fon Resistance between cOM and NC or NO ports when the channel is ON Δfon Difference of r _{on} between channels in a specific device fon(figt) Difference of r _{on} between channels in a specific device InC(OFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state INC(ON) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state INC(ON) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state INC(ON) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state ICOM(OFF) Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state ICOM(ON) Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state ICOM(ON) WIH Minimum input voltage for logic high for the control input (IN, EN) VIL Maximum input voltage for logic high for the control input (IN, EN) VII. Maximum input voltage for logic high for the control input (IN, EN) Intro- II Turn- of time for the switch. This parameter is measured under the specified range of conditions and by the propagation delabetween the digital control (IN) signal and shalog output (NC or N		Voltage at NC
Resistance between COM and NC or NO ports when the channel is ON Aron Difference of rop between channels in a specific device Fon(flat) Difference between the maximum and minimum value of ron in a channel over the specified range of conditions INC(OFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the compount (NI, EN) VIL Maximum input voltage for logic loy for the control input (IN, EN) VIL Leakage current measured at the control input (IN, EN) Leakage current measured at the control input (IN, EN) Leakage current measured at the control input (IN, EN) Inn- It Leakage current measured at the control input (IN, EN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection, Cc = C xN/COM, Cl, Lis the load capacitance, and xN/COM is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF Capacitance at the NC port when the corresponding channel (NC to COM) is OFF Capacitance at the NC port when the corresponding channel (NC to COM) is OFF Cap	H	Voltage at NO
Inc(Intat) Difference between the maximum and minimum value of ron in a channel over the specified range of conditions INC(OFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (CO open IND(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open IND(ON) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open ICOM(OFF) Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (INC or NO) open VIH Minimum input voltage for logic high for the control input (IN, EN) VIL Maximum input voltage for logic high for the control input (IN, EN) VIII Voltage at the control input (IN, EN) ITUM-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and railog) output (INC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and railog) output (INC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (INC or NO) signal when the switch is turning OFF. Carge injection, QC = QL x V COM. CL is the load capacitance. Charge injection or QC = QL x V COM. CL is the load capacitance, and ΔVCOM is the change in anal		Resistance between COM and NC or NO ports when the channel is ON
Inc(Intat) Difference between the maximum and minimum value of ron in a channel over the specified range of conditions INC(OFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (CO open IND(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open IND(ON) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open ICOM(OFF) Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (INC or NO) open VIH Minimum input voltage for logic high for the control input (IN, EN) VIL Maximum input voltage for logic high for the control input (IN, EN) VIII Voltage at the control input (IN, EN) ITUM-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and railog) output (INC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and railog) output (INC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (INC or NO) signal when the switch is turning OFF. Carge injection, QC = QL x V COM. CL is the load capacitance. Charge injection or QC = QL x V COM. CL is the load capacitance, and ΔVCOM is the change in anal	Δr_{on}	Difference of ron between channels in a specific device
INC(OFF) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state INC(ON) Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (CO open INO(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (NC or NO) open VII. Maximum input voltage for logic low for the control input (IN, EN) Voltage at the control input (IN, EN) Inh. IIL Leakage current measured at the control input (IN, EN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulon b C; and measured by the total charge induced due to switching of the control input. This is measured in the NC port when the corresponding channel (NC to COM) is OFF Charge injection, QC = Q; xVCOM; C [is the load capacitance, and xVCOM) (s) is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the cor		
Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (CO open INO(OFF) Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state VIH Maximum input voltage for logic low for the control input (IN, EN) VIL Maximum input voltage for logic low for the control input (IN, EN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, O _C = C ₂ xA'C _{COM} , C ₃ is the load capacitance, and xA'C _{COM} , C ₃ is the load capacitance, and xA'C _{COM} , C ₃ is the load capacitance, and xA'C _{COM} , C ₃ is the load capacitance, a	` ′	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state
Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state LeoM(ON) Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state output (NC or NO) open VIH Minimum input voltage for logic high for the control input (IN, EN) VIL Maximum input voltage for logic low for the control input (IN, EN) VI, Woltage at the control input (IN, EN) Important measured at the control input (IN, EN) Leakage current measured at the control input (IN, EN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unvanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulomb (G) and measured by the total charge induced due to switching of the control input. Charge injection, QC = QL ×AVCOM, QL is the load capacitance, and AVCOM is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON COMCOFF) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CCOMCOFF) Capacitance at the NC port when the corresponding channel (NC to NC) is OFF CCOM(ON) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to NC) is ON Crosstalk is a measure of un	` '	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open
Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (CO open Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (NC or NO) open Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (NC or NO) open Vih	INO(OFF)	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
IcoM(ON) Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the ON state and the output (NC or NO) open		Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
ViH Minimum input voltage for logic high for the control input (IN, EN) ViL Maximum input voltage for logic low for the control input (IN, EN) Vi Voltage at the control input (IN, EN) Vi Voltage at the control input (IN, EN) Inh, InL Leakage current measured at the control input (IN, EN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, Q _C = C \(\times \text{AV}\COM\). CL is the load capacitance, and ΔV _{COM} is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CADICORY Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CADICORY Capacitance at the NC port when the corresponding channel (NO to COM) is OFF CADICORY Capacitance at the NC port when the corresponding channel (NO to COM) is OFF CADICORY Capacitance at the NC port when the corresponding channel (NO to NC) is OFF CADICORY Capacitance at the COM port when the corresponding channel (NO to NC) is OFF CADICORY Capacitance at the COM port when the corresponding channel (NO to NC) is OFF Capacitance at the COM port when the corresponding channel (NO to COM) is ON C1 Capacitance at the COM port when the corresponding channel (NO to COM) is ON C2 Capacitance at the COM port when the corresponding channel (NO to COM) is ON C3 C4 C4 C4 C5 C5 C5 C6 C7 C7 C7 C7 C7 C7 C7	ICOM(OFF)	Leakage current measured at the COM port, with the corresponding channel (COM to NC or NO) in the OFF state
V L Maximum input voltage for logic low for the control input (IN, EN)	ICOM(ON)	
Voltage at the control input (IN, EN)	VIH	Minimum input voltage for logic high for the control input (IN, EN)
I IH. I IL Leakage current measured at the control input (IN, EN) Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, QC = CL × ΔVCOM, CL is the load capacitance, and ΔVCOM is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NO to COM) is ON COM(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON C1 Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the	V _{IL}	Maximum input voltage for logic low for the control input (IN, EN)
Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON. Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation dela between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, QC = CL × AVCOM, CL is the load capacitance, and AVCOM is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CNO(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is ON COM(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON C1 Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. XTALK Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below t	VI	Voltage at the control input (IN, EN)
toff	I _{IH} , I _{IL}	Leakage current measured at the control input (IN, EN)
between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF. Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC or NO) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, QC = CL × ΔVCOM. CL is the load capacitance, and ΔVCOM is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CNO(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is OFF CNO(ON) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON CI Capacitance at the COM port when the corresponding channel (COM to NC) is ON CI Capacitance of control input (IN, EN) OISO OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is −3 dB below the DC gain. ThD Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	tON	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning ON.
This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, Q _C = C _L × AV _{COM} , C _L is the load capacitance, and ΔV _{COM} is the change in analog output voltage. CNC(OFF) Capacitance at the NC port when the corresponding channel (NC to COM) is OFF CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CNO(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is OFF CNO(ON) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON C _I Capacitance at the COM port when the corresponding channel (COM to NC) is ON C _I Capacitance of control input (IN, EN) OISO OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. XTALK Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	^t OFF	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (NC or NO) signal when the switch is turning OFF.
CNC(ON) Capacitance at the NC port when the corresponding channel (NC to COM) is ON CNO(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is OFF CNO(ON) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON Cl Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	QC	This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input.
CNO(OFF) Capacitance at the NC port when the corresponding channel (NO to COM) is OFF CNO(ON) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON CI Capacitance of control input (IN, EN) OISO OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. THD Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
CNO(ON) Capacitance at the NC port when the corresponding channel (NO to COM) is ON CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON Cl Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. XTALK Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
CCOM(OFF) Capacitance at the COM port when the corresponding channel (COM to NC) is OFF CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON Cl Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	C _{NO(OFF)}	Capacitance at the NC port when the corresponding channel (NO to COM) is OFF
CCOM(ON) Capacitance at the COM port when the corresponding channel (COM to NC) is ON Cl Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	C _{NO(ON)}	Capacitance at the NC port when the corresponding channel (NO to COM) is ON
Cl Capacitance of control input (IN, EN) OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	CCOM(OFF)	
OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	CCOM(ON)	_
with the corresponding channel (NC to COM) in the OFF state. Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC1 to NO1). Adjacent crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mear square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	Cl	
TALK crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB. BW Bandwidth of the switch. This is the frequency in which the gain of an ON channel is –3 dB below the DC gain. Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mear square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	O _{ISO}	
Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	X _{TALK}	crosstalk is a measure of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is
square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.	BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
I ₊ Static power-supply current with the control (IN) pin at V ₊ or GND	THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
<u>, , , , , , , , , , , , , , , , , , , </u>	l ₊	Static power-supply current with the control (IN) pin at V ₊ or GND

PARAMETER MEASUREMENT INFORMATION

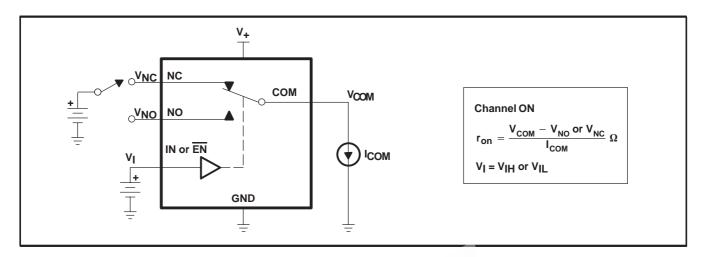


Figure 13. ON-State Resistance (ron)

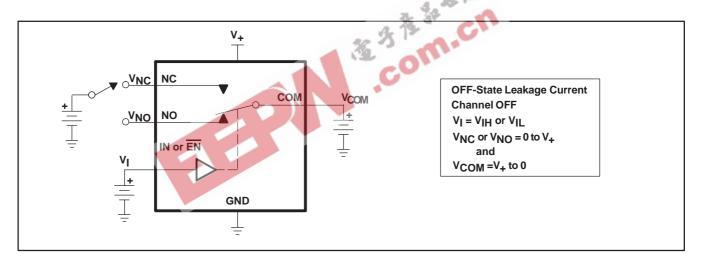


Figure 14. OFF-State Leakage Current (I_{COM(OFF)}, I_{NC(OFF)}, I_{NO(OFF)}

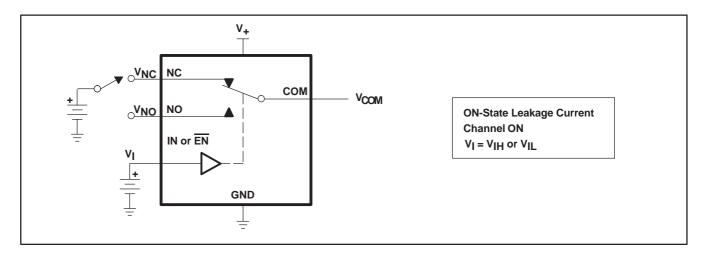


Figure 15. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NC(ON)}$)

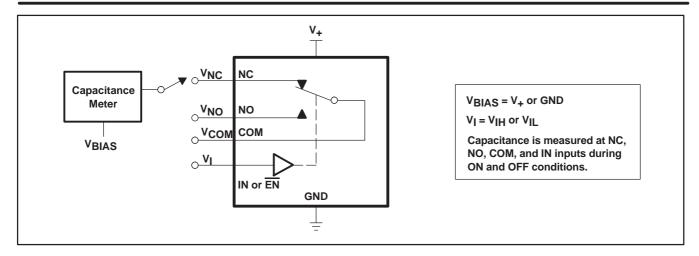



Figure 16. Capacitance (C_I, C_{COM(OFF)}, C_{COM(ON)}, C_{NC(OFF)}, C_{NC(ON)})

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.
- (2) C_L includes probe and jig capacitance.
- (3) See Electrical Characteristics for V_{COM}.

Figure 17. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

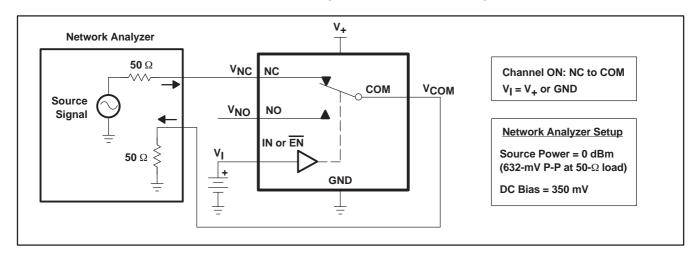
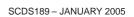



Figure 18. Bandwidth (BW)

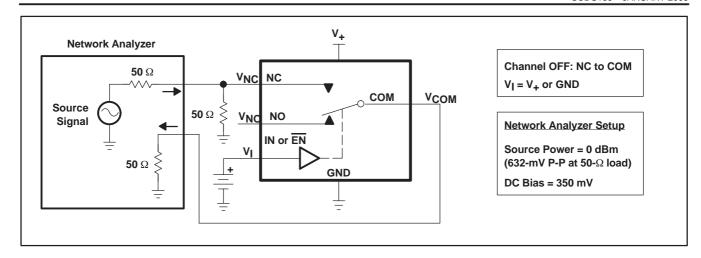


Figure 19. OFF Isolation (O_{ISO})

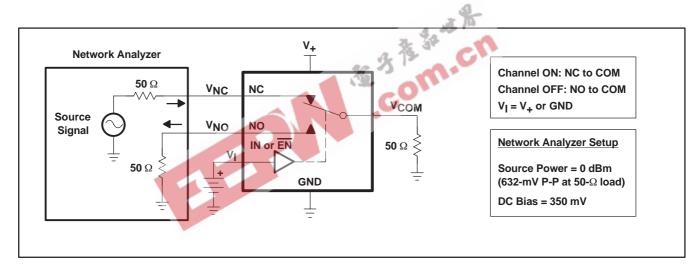
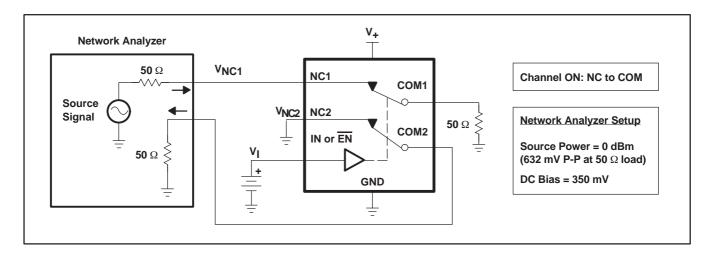
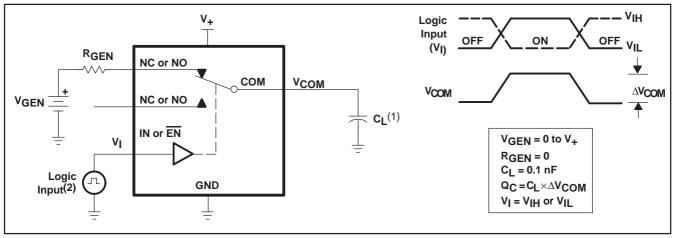
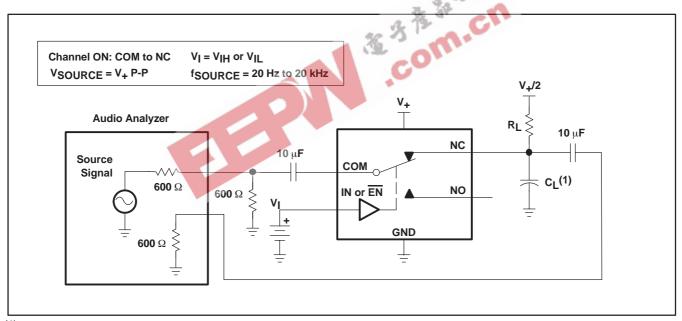


Figure 20. Crosstalk (X_{TALK})


Figure 21. Crosstalk Adjacent

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.

Figure 22. Charge Injection (Q_C)

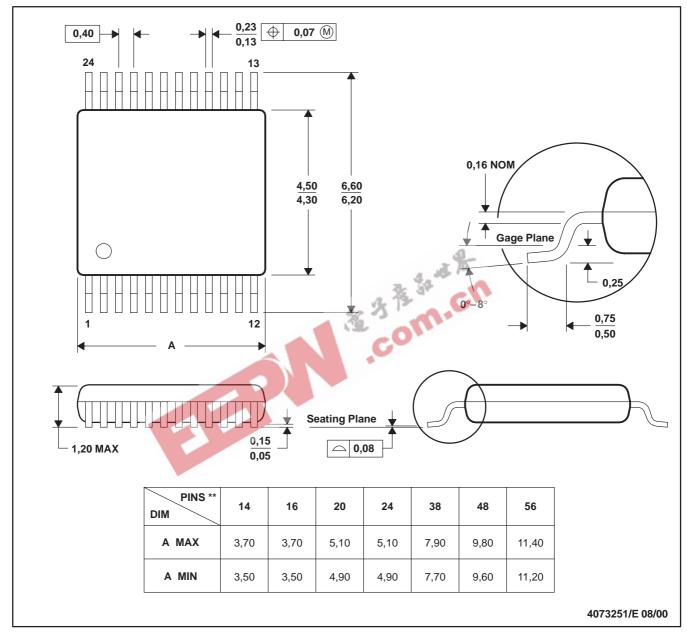

(1) C_L includes probe and jig capacitance.

Figure 23. Total Harmonic Distortion (THD)

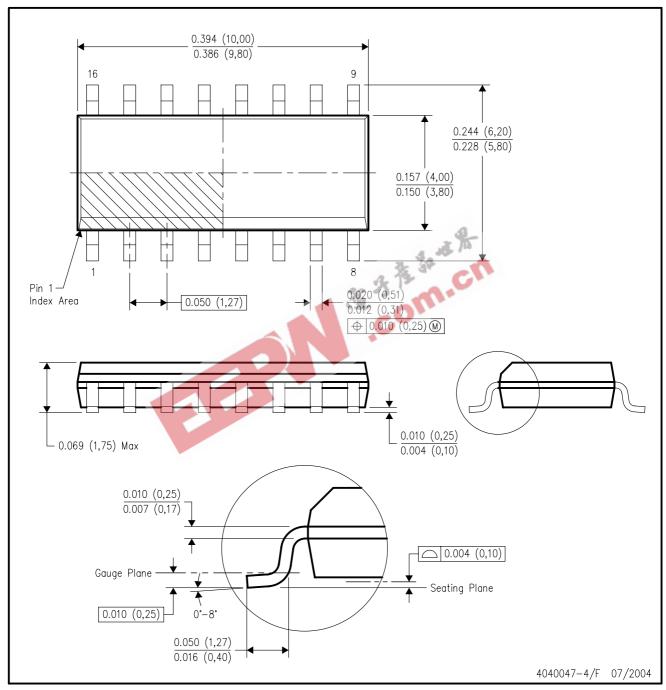
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

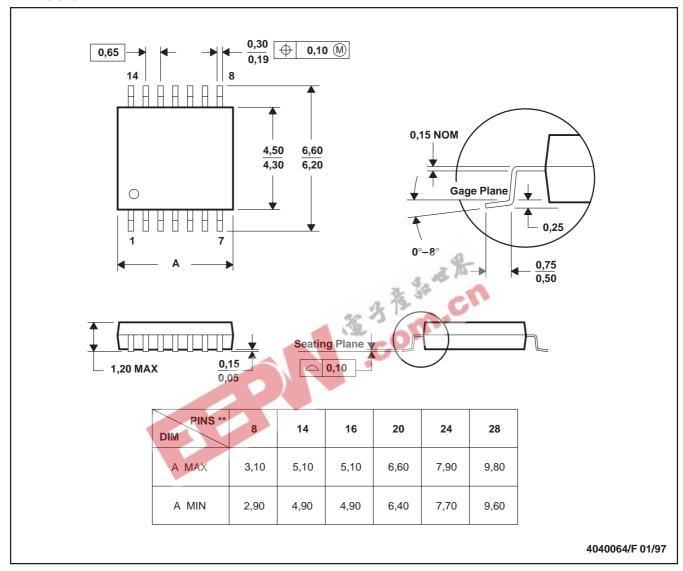
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

DBQ (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AB.

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated