

Adjustable Precision Shunt Regulator

TO-92

10-92

Pin Definition:

1. Cathode

CONDUCTOR

- 2. Anode
- 3. Reference

SOT-23

Pin Definition:

- 1. Cathode
- 2. Reference
- 3. Anode

General Description

TS1431 series integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5V reference makes it convenient to obtain a stable reference from 5.0V logic supplies, and since The TS1431 series operates as a shunt regulator, it can be used as either a positive or negative stage reference.

Features

 Precision Reference Voltage TS1431 – 2.495V±2% TS1431A – 2.495V±1%

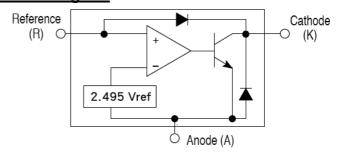
TS1431B - 2.495V±0.5%

- Equivalent Full Range Temp. Coefficient: 50ppm/ °C
- Programmable Output Voltage up to 36V
- Fast Turn-On Response
- Sink Current Capability of 1~100mA
- Low Dynamic Output Impedance: 0.2Ω
- Low Output Noise

Ordering Information

Part No.	Package	Packing
TS1431xCT B0	TO-92	1Kpcs / Bulk
TS1431xCT A3	TO-92	2Kpcs / Ammo
TS1431 <u>x</u> CX RF	SOT-23	3Kpcs / 7" Reel
TS1431 <u>x</u> CT B0G	TO-92	1Kpcs / Bulk
TS1431xCT A3G	TO-92	2Kpcs / Ammo
TS1431xCX RFG	SOT-23	3Kpcs / 7" Reel

Note: "G" denote for Green Product


Where <u>xx</u> denotes voltage tolerance **Blank**: ±2%, **A**: ±1%, **B**: ±0.5%

D. . D.

Application

- Voltage Monitor
- Delay Timmer
- Constant –Current Source/Sink
- High-Current Shunt Regulator
- Crow Bar
- Over-Voltage / Under-Voltage Protection

Block Diagram

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

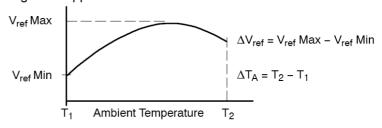
Parameter		Symbol	Limit	Unit
Cathode Voltage		Vka	36	V
Continuous Cathode Current Range		lk	1 ~ +100	mA
Reference Input Current Range		Iref	-0.05 ~ +10	mA
Power Dissipation	TO-92 SOT-23	Pd	0.625 0.30	W
Junction Temperature		Tj	+150	°C
Operating Temperature Range		Toper	0 ~ +70	°C
Storage Temperature Range		Tstg	-65 ~ +150	°C

Adjustable Precision Shunt Regulator

Pb Rohs COMPLIANCE

Recommend Operating Condition

Parameter	Symbol	Limit	Unit
Cathode Voltage (Note 1)	V_{KA}	Ref ~ 36	V
Continuous Cathode Current Range	I _K	1 ~ 100	mA


Recommend Operating Condition

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
	TS1431		\/ -\/ =10mA (Figure 1)	2.450	· -	2.550	V
Reference voltage	TS1431A	V_{REF}	$V_{KA} = V_{REF}$, $I_K = 10$ mA (Figure 1) Ta=25°C	2.475		2.525	
	TS1431B		14-25 C	2.487		2.513	
Deviation of reference	Deviation of reference input		$V_{KA} = V_{REF}$, $I_K = 10 \text{mA}$ (Figure 1)		3	17	mV
voltage		Δ V _{REF}	Ta= full range		3	17	IIIV
Radio of change in \	Radio of change in Vref to		I_{KA} =10mA, V_{KA} = 10V to V_{REF}		-1.4	-2.7	mV/V
change in cathode V	change in cathode Voltage		V _{KA} = 36V to 10V (Figure 2)		-1.0	-2.0	IIIV/V
Deference Input curr	Deference Input ourrent		R1=10KΩ, R2= ∞ , I _{KA} =10mA		0.7	4.0	uA
Reference Input current		I _{REF}	Ta= full range (Figure 2)		0.7	4.0	uA
Deviation of reference input		ΔΙ	R1=10KΩ, R2=∞, I _{KA} =10mA		0.4	1.2	uA
current, over temp.		ΔI_{REF}	Ta= full range (Figure 2)		0.4	1.2	uA
Off-state Cathode Current		I _{KA} (off)	V _{REF} =0V (Figure 3),			1.0	uA
		IKA (UII)	V _{KA} =36V			1.0	uA
Dynamic Output Impedance		ZKA	$f<1KHz$, $V_{KA} = V_{REF}$		0.22	0.5	Ω
		ZKA	I _{KA} =1mA to 100mA (Figure 1)		0.22	0.5	\$2
Minimum operating cathode		I _{KA} (min)	V _{KA} = V _{REF} (Figure 1)		0.4	0.6	mA
current		TKA (TIIIT)	VKA - VREF (I IGUIE I)		0.4	0.0	111/

^{*} The deviation parameters ΔV_{REF} and ΔI_{REF} are defined as difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

* The average temperature coefficient of the reference input voltage, αV_{REF} is defined as:

$$\alpha V_{ref} \; \left(\frac{ppm}{^{\circ}C}\right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} \; (T_{A} = 25^{\circ}C)} \times 10^{6}\right)}{\Delta T_{A}}$$

Where: **T2-T1** = full temperature change.

 αV_{REF} can be positive or negative depending on whether the slope is positive or negative.

Example: Maximum V_{REF}=2.496V at 30°C, minimum V_{REF} =2.492V at 0°C, V_{REF} =2.495V at 25°C, ΔT=70°C

$$\alpha V_{REF}$$
 | = [4mV / 2495mV] * 10⁶ / 70°C ≈ 23ppm/°C

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

* The dynamic impedance ZKA is defined as:

$$|Z_{KA}| = \Delta V_{KA} / \Delta I_{KA}$$

* When the device operating with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is given by:

$$|Z_{KA}| = \Delta v / \Delta i | \approx Z_{KA} | * (1 + R1 / R2)$$

Adjustable Precision Shunt Regulator

Test Circuits

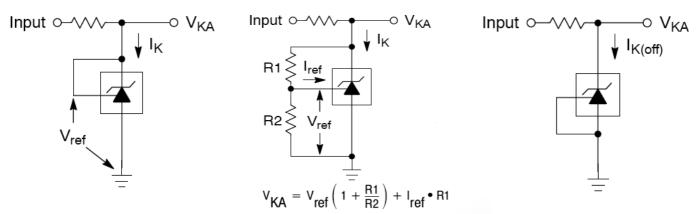
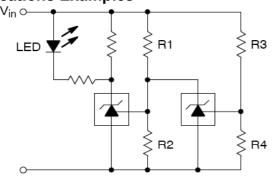


Figure 1: $V_{KA} = V_{REF}$

Figure 2: V_{KA} > V_{REF}

Figure 3: Off-State Current

Additional Information - Stability


When The TS1431/1431A/1431B is used as a shunt regulator, there are two options for selection of C_L , are recommended for optional stability:

- A) No load capacitance across the device, decouple at the load.
- B) Large capacitance across the device, optional decoupling at the load.

The reason for this is that TS1431/1431A/1431B exhibits instability with capacitances in the range of 10nF to 1uF (approx.) at light cathode current up to 3mA (typ). The device is less stable the lower the cathode voltage has been set for. Therefore while the device will be perfectly stable operating at a cathode current of 10mA (approx.) with a 0.1uF capacitor across it, it will oscillate transiently during start up as the cathode current passes through the instability region. Select a very low capacitance, or alternatively a high capacitance (10uF) will avoid this issue altogether. Since the user will probably wish to have local decoupling at the load anyway, the most cost effective method is to use no capacitance at all directly across the device. PCB trace/via resistance and inductance prevent the local load decoupling from causing the oscillation during the transient start up phase.

Note: if the TS1431/1431A/1431B is located right at the load, so the load decoupling capacitor is directly across it, then this capacitor will have to be ≤ 1 nF or ≥ 10 uF.

Applications Examples

L.E.D. indicator is 'ON' when V_{in} is between the upper and lower limits,

Lower limit =
$$\left(1 + \frac{R1}{R2}\right) V_{ref}$$

Upper limit = $\left(1 + \frac{R3}{R4}\right) V_{ref}$

Figure 4: Voltage Monitor

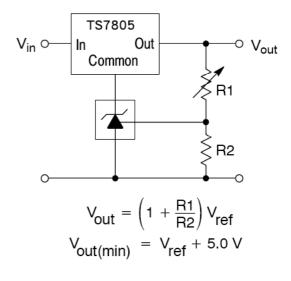


Figure 5: Output Control for Three Terminal Fixed Regulator

Applications Examples (Continue)

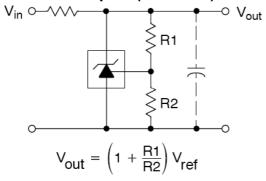
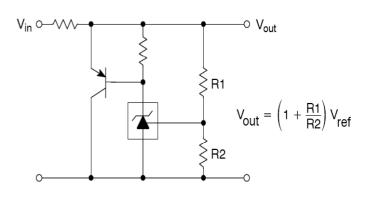



Figure 6: Shunt Regulator

Figure 7: High Current Shunt Regulator

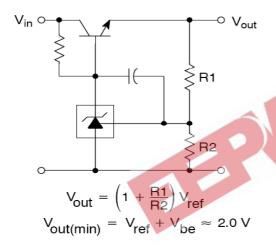
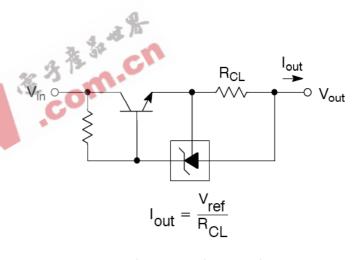



Figure 8: Series Pass Regulator

Figure 9: Constant Current Source

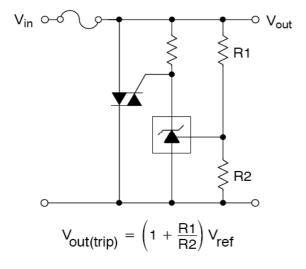
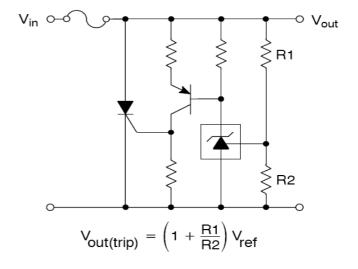
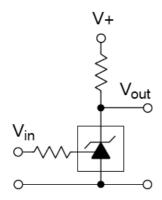


Figure 10: TRIAC Crowbar




Figure 11: SCR Crowbar

Applications Examples (Continue)

Vin	Vout	
<vref< th=""><th>V+</th></vref<>	V+	
>Vref	≈0.74V	

Figure 12: Single-Supply Comparator with Temperature-Compensated Threshold

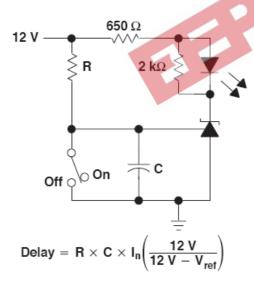
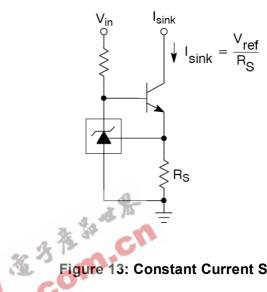



Figure 14: Delay Timer

Adjustable Precision Shunt Regulator

Figure 13: Constant Current Sink

Typical Performance Characteristics

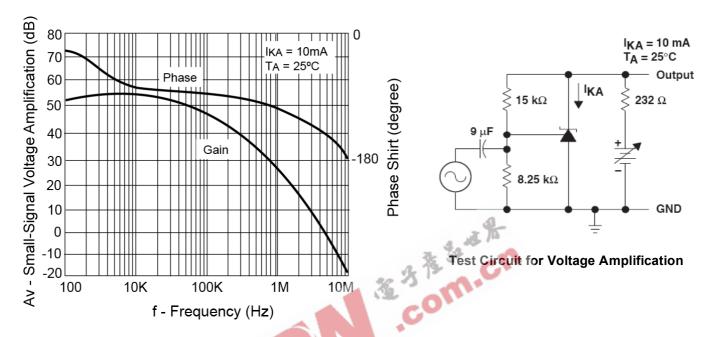


Figure 14: Small-Signal Voltage Gain and Phase Shirt vs. Frequency

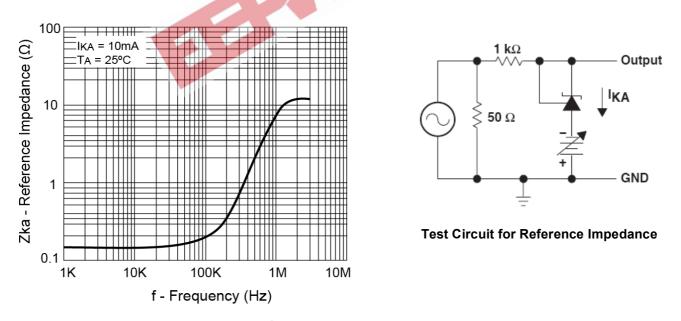
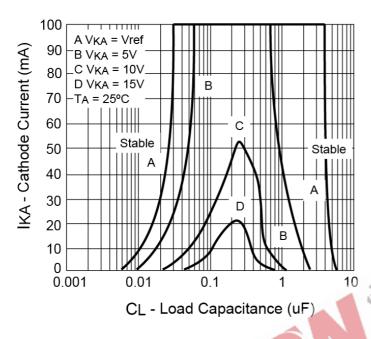
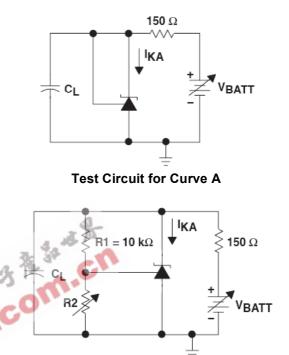
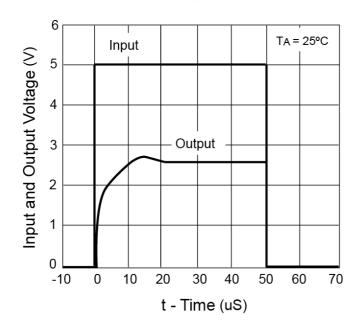
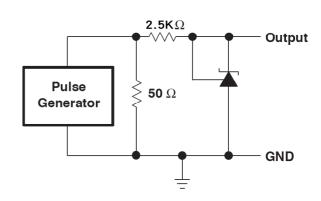



Figure 15: Reference Impedance vs. Frequency



Typical Performance Characteristics (Continue)




The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IKA conditions with CL=0. VBATT and CL then were adjusted to determine the ranges of stability.

Test Circuit for Curve B, C and D

Figure 16: Stability Boundary Condition

Test Circuit for Pulse Response, Ik=1mA

Figure 17: Pulse Response

Electrical Characteristics

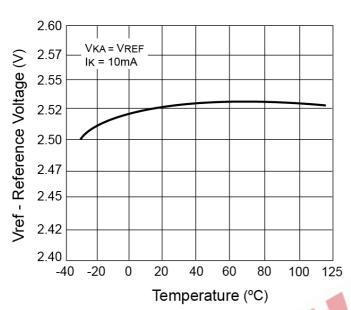


Figure 18: Reference Voltage vs. Temperature

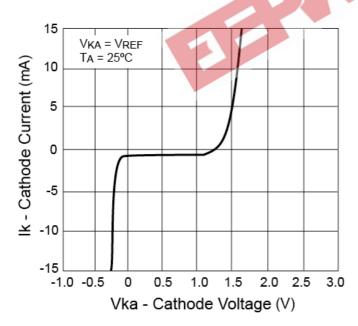
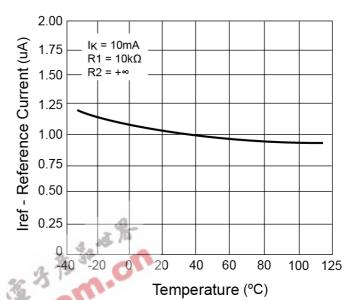



Figure 20: Cathode Current vs. Cathode Voltage

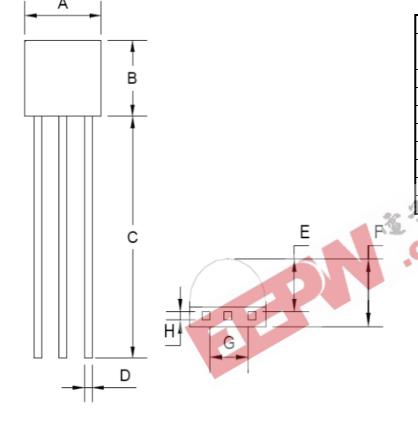
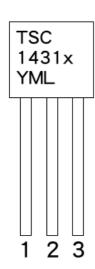

Adjustable Precision Shunt Regulator

Figure 19: Reference Current vs. Temperature



TO-92 Mechanical Drawing

TO-92 DIMENSION					
DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	4.30	4.70	0.169	0.185	
В	4.30	4.70	0.169	0.185	
С	14.30(typ)		0.563(typ)		
D	0.43	0.49	0.017	0.019	
Ε	2.19	2.81	0.086	0.111	
F	3.30	3.70	0.130	0.146	
G	2.42	2.66	0.095	0.105	
H	0.37	0.43	0.015	0.017	

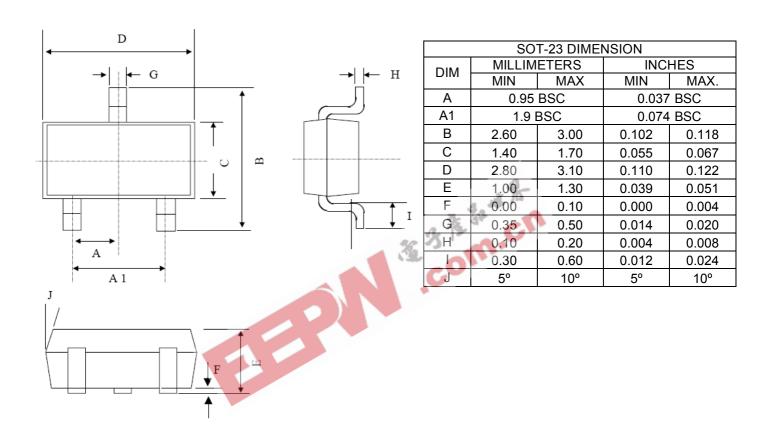
Marking Diagram

X = Tolerance Code

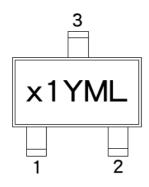
 $(A = \pm 1\%, B = \pm 0.5\%, Blank = \pm 2\%,)$

Y = Year Code

M = Month Code


(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

L = Lot Code


Adjustable Precision Shunt Regulator

SOT-23 Mechanical Drawing

Marking Diagram

1 = Device Code

X = Tolerance Code

 $(A = \pm 1\%, B = \pm 0.5\%, C = \pm 2\%,)$

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep,

J=Oct, K=Nov, L=Dec)

L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.