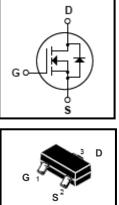


WFY3N02


20V N-Channel MOSFET

Features

- 2.8A, 20V, R_{DS(on)}(Max 65mΩ)@V_{GS}=-4.5V
- 1.2 V Rated for Low Voltage Gate Drive
- SOT-23 Surface Mount for Small Footprint
- Single Pulse Avalanche Energy Rated

General Description

This Power MOSFET is produced using Winsemi's advanced MOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for Load switching and PA switching.

SOT-23 Marking: H04F

Absolute Maximum Ratings(Tc=25°C unless otherwise noted)

Symbol	Parameter			Units
V _{DSS}	Drain Source Voltage			V
ID	Continuous Drain Current			А
Ідм	Drain Current Pulsed			А
PD			0.9	W
	Total Power Dissipation(Note 1)	Tc=75℃	0.6	vv
V _{GS}	Gate to Source Voltage			V
ESD	ESD Capability (Note 3) $C=100 pF, R_s = 1500 \Omega$			V
T _{J,} T _{stg}	Junction and Storage Temperature			°C
TL	Maximum lead Temperature for soldering purposes	260	°C	

Maximum ratings are those values beyond which device damage can occur.Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Thermal Characteristics

Symbol	Parameter		Value			
Symbol	Falametei	Min	Тур	Max	Units	
R _{QJA}	Thermal Resistance, Junction-to-Ambient(Note 1)	-	-	170	°C/W	
R _{QJA}	Thermal Resistance, Junction-to-Ambient(Note 1)			110	°C/W	
R _{QJA}	Thermal Resistance, Junction-to-Ambient(Note 2)			300	°C/W	

Note 1: Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces) Note 2: Surface-mounted on FR4 board using the minimum recommended pad size.

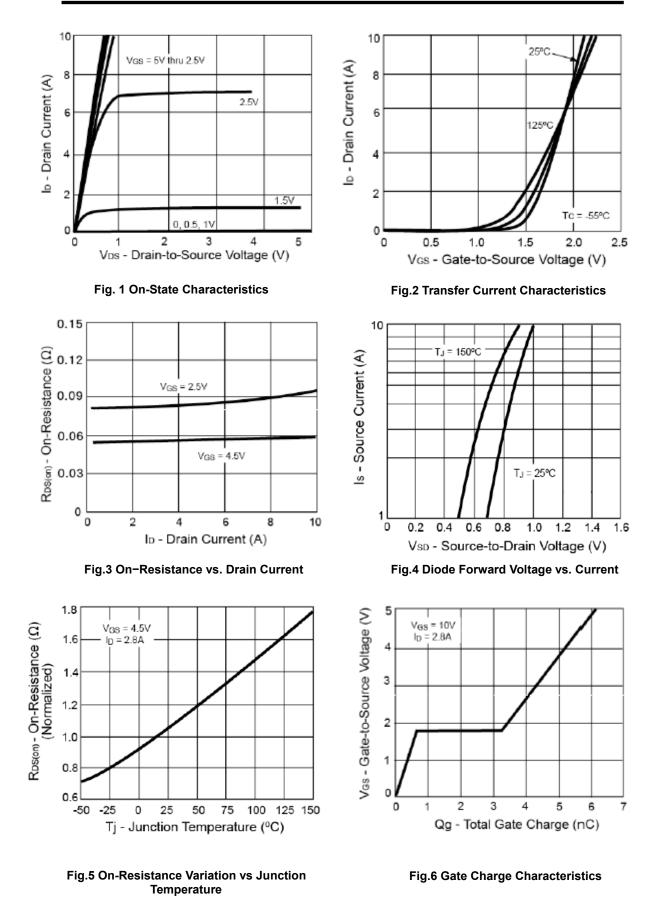
Note 3: ESD Rating Information: HBM Class 0

Characteristics		Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage current(Note 4)		I _{GSS}	$V_{GS} = \pm 8 V, V_{DS} = 0 V$	-	-	±100	nA
Drain cut-off current(Note 4)		I _{DSS}	V _{DS} = 16 V, V _{GS} = 0 V	-	-	-1	μA
Drain-source breakdown voltage		V _{(BR)DSS}	I _D = 250 μA, V _{GS} = 0 V	20	-	-	V
Gate threshold voltage		V _{GS(th)}	V _{DS} = V _{DS} I _D =-250 μA	0.65	-	1.2	V
Drain-source ON resistance		D	VGS = 4.5 V, ID = 2.8 A	-	40	65	mΩ
		R _{DS(ON)}	VGS = 2.5 V, ID = 2.0 A		50	95	
Forward Transconductance		gfs	VDS = 5.0 V, ID = 2.8 A	-	6.5	-	S
Input capacitance		Ciss	V _{DS} = 6 V,	-	428	-	
Reverse transfer capacitance		Crss	V _{GS} = 0 V,	-	57	-	pF
Output capacitance		Coss	f = 1 MHz	-	80	-	
Switching time (Note 5)	Turn-on Delay time	t _{d(on)}	V _{GS} = 4.5 V,	-	6.2	-	
	Turn-on Rise time	tr	V _{DS} =6.0 V,	-	7.5	-	- ns
	Turn-off Delay time	t _{d(off)}	I _D = 1.0 A,	-	16.0	-	
	Turn-off Fall time	t _f	R _G = 6 Ω, R _L =10 Ω	-	4.2	-	
Total gate charge		Qg	V _{GS} = 4.5V,	-	7.5	8.5	
Gate-source charge		Qgs	V _{DS} =6 V,	-	1.2	-	nC
Gate-drain ("miller") Charge		Qgd	I₀ = 2.8 A	-	2.2	-	1

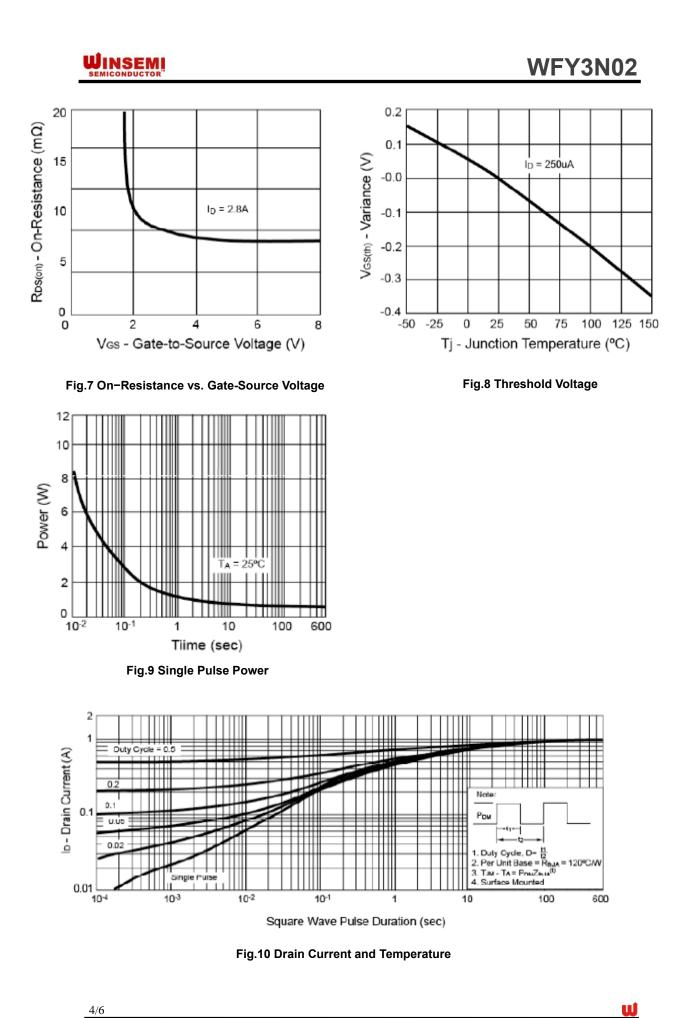
Source–Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	I _{DR}	-	-	-	2.8	А
Pulse drain reverse current	I _{DRP}	-	-	-	8.0	А
Forward voltage (diode)	VDSF	I _{DR} = 1.6A, V _{GS} = 0 V	-	0.76	1.2	V

Note 4: Pulse Test: Pulse Width ≤300µs, Duty Cycle 3 2%.


Note 5: Switching characteristics are independent of operating junction temperature.

This transistor is an electrostatic sensitive device


Please handle with caution

WFY3N02

W

4/6

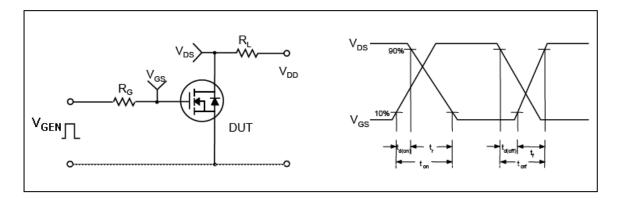
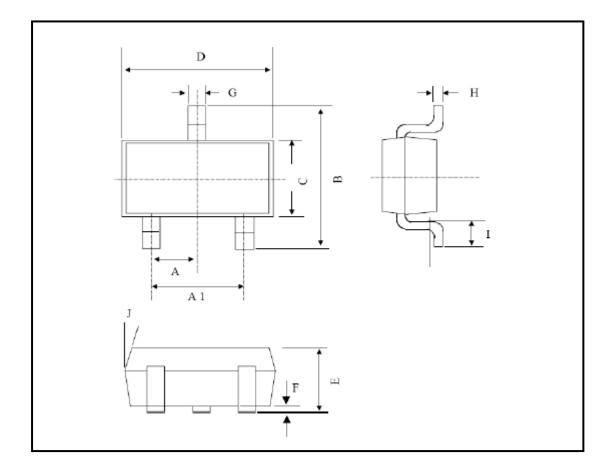



Fig.11 Resistive Switching Test & Waveforms

DIM	MILLIN	MTERS	INCHES		
	MIN	MAX	MIN	MAX	
А	0.	95	0.037		
A1	1.90		0.074		
В	2.60	3.00	0.102	0.118	
С	1.40	1.70	0.055	0.067	
D	2.80	3.10	0.110	0.122	
E	1.00	1.30	0.039	0.051	
F	0.00	0.10	0.000	0.004	
G	0.35	0.50	0.014	0.020	
Н	0.10	0.20	0.004	0.008	
I	0.30	0.60	0.012	0.024	
J	50°	10°	50°	10º	

SOT-23 Package Dimension

