

May 2013

FDD1600N10ALZD

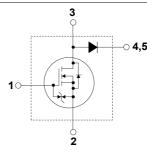
BoostPak (N-Channel PowerTrench $^{\!R}$ MOSFET + Diode) 100 V, 6.8 A, 160 m Ω

Features

- $R_{DS(on)}$ = 124 m Ω (Typ.)@ V_{GS} = 10 V, I_D = 3.4 A
- $R_{DS(on)}$ = 175 m Ω (Typ.)@ V_{GS} = 5.0 V, I_D = 2.1 A
- Low Gate Charge (Typ.2.78 nC)
- Low C_{rss} (Typ. 2.04 pF)
- · Fast Switching
- · 100% Avalanche Tested
- · Improved dv/dt Capability
- · RoHS Compliant

Description

This N-Channel MOSFET is produced using Fairchild Semiconductor[®]'s PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.


The NP diode is hyperfast rectifier with low forward voltage drop and excellent switching performance.

Applications

- · LED Monitor Backlight
- · LED TV Backlight
- LED Lighting
- Consumer Appliances, DC-DC converter (Step up & Step down)

- 1. Gate
- 2. Source
- 3. Drain / Anode
- 4. Cathode
- 5. Cathode

Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter			FDD1600N10ALZD	Unit
V _{DSS}	Drain to Source Voltage				V
V _{GSS}	Gate to Source Voltage			±20	V
	Drain Current	- Continuous (T _C = 25°C)		6.8	Δ.
I _D Drain Current		- Continuous (T _C = 100°C)		4.3	A
DM	Drain Current	- Pulsed	- Pulsed (Note 1)		Α
AS	Single Pulsed Avalanche	Energy	(Note 2)	5.08	mJ
lv/dt	Peak Diode Recovery dv/dt (N		(Note 3)	6.0	V/ns
F	Diode Continuous Forward Current (T _C = 124°C)			4	Α
FM	Diode Maximum Forward	Current		40	Α
,	Dawer Dissination	(T _C = 25°C)		14.9	W
P _D Power Dissipation		- Derate above 25°C		0.12	W/°C
J, T _{STG}	Operating and Storage Te	emperature Range		-55 to +150	οС
T _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FDD1600N10ALZD	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case for MOSFET, Max	8.4	
$R_{\theta JC}$	Thermal Resistance, Junction to Case for Diode, Max 3.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max	87	

Package Marking and Ordering Information

Parameter

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1600N10ALZD	FDD1600N10ALZD	TO252-5L	13"	12mm	2500

Test Conditions

Min.

Тур.

Max.

Unit

Electrical Characteristics of the MOSFET T_C = 25°C unless otherwise noted

Off Characteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	0.1	-	V/°C
ı	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μA
^I DSS	Zero Gate voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	500	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±10	μΑ

On Characteristics

Symbol

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.4	2.1	2.8	٧
D	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 3.4 \text{ A}$	-	124	160	mΩ
R _{DS(on)} Static Dr	Static Drain to Source On Resistance	V _{GS} = 5 V, I _D = 2.1 A	-	175	375	11122
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 6.8 A	-	19.6	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance			-	169	225	pF
Coss	Output Capacitance	V _{DS} = 50 V, V _{GS} =	= U V	-	43	55	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 WH 12	1 - 1 MHZ		2.04	-	pF
C _{oss(er)}	Energy Related Output Capacitance	V _{DS} = 50 V, V _{GS} = 0 V			85	-	pF
Q _{g(tot)}	Total Gate Charge at 10V	V _{GS} = 10 V		-	2.78	3.61	nC
Q _{g(tot)}	Total Gate Charge at 5V	V _{GS} = 5 V	V _{DD} = 50 V,		1.5	1.95	nC
Q _{gs}	Gate to Source Gate Charge		☐ I _D = 6.8 A	-	0.72	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		(Note 4)	-	0.56	-	nC
V _{plateau}	Gate Plateau Volatge		(14016-4)	-	4.02	-	V
Q _{sync}	Total Gate Charge Sync.	$V_{DS} = 0 \text{ V}, I_{D} = 3.4$		-	2.5	-	nC
Q _{oss}	Output Charge	V _{DS} = 50 V, V _{GS} =	= 0 V	-	5.2	-	nC

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	7	24	ns
t _r	Turn-On Rise Time	$V_{DD} = 50 \text{ V}, I_{D} = 6.8 \text{ A}$	-	2	14	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 4.7 Ω	-	13	36	ns
t _f	Turn-Off Fall Time	(Note 4)	-	2	14	ns
ESR	Equivalent Series Resistance (G-S)	f = 1 MHz	_	2.1	_	Ω

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode Forward Current			-	6.8	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	13.6	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 6.8 A	-	-	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 6.8 A, V _{DS} = 50 V	-	37	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	42	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L = 1mH, I_{AS} = 3.18A, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 3. $I_{SD} \le$ 6.8A, di/dt \le 200A/ μ s, $V_{DD} \le$ BV $_{DSS}$, Starting T_J = 25°C
- 4. Essentially Independent of Operating Temperature Typical Characteristics
- 5. See the test circuit in page 10

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Cond	litions	Min.	Тур.	Max.	Unit
V_R	DC Blocking Voltage	I _R = 1 mA		150	-	-	V
V	Maximum Instantaneous Forward Voltage	I = 4 A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	-	2.5	V
V_{FM}	Maximum instantaneous Forward voltage	I _F = 4 A	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	1.01	-	V
	Maximum Instantaneous Reverse Current @	noted VD	$T_C = 25^{\circ}C$	-	-	50	
I _{RM}	Maximum instantaneous Reverse Current &	T _C = 125	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	-	1000	uA
	Diada Bayaraa Baaayary Tima		$T_C = 25^{\circ}C$	-	12.7	26	20
t _{rr}	Diode Reverse Recovery Time		$T_{\rm C} = 125^{\rm o}{\rm C}$	-	17.1	-	ns
	Diode Peak Reverse Recovery Current	I _F = 4 A dI/dt = 200 A/μs	$T_C = 25^{\circ}C$	-	2.6	6	Α
'rr	Diode Feak Reverse Recovery Current	αι/αι – 200 Α/μS	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	3.8	-	"
0	Diada Dayaraa Dagayary Charga		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	18.3	-	nC
Q _{rr}	Diode Reverse Recovery Charge	$T_C = 125$	T _C = 125°C	-	35.7	-	l IIC
W _{AVL}	Avalanche Energy (L=40mH)			10	-	-	mJ

Typical Performance Characteristics - MOSFET

Figure 1. On-Region Characteristics

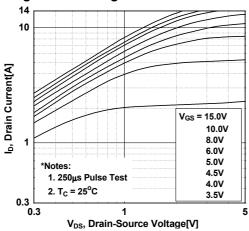
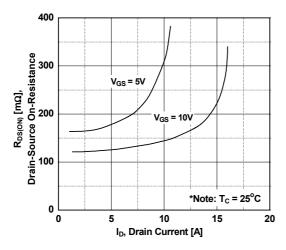



Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

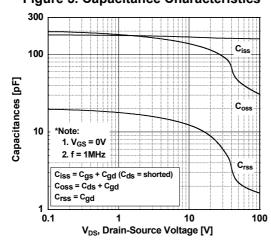


Figure 2. Transfer Characteristics

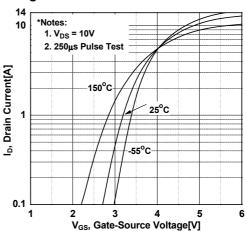


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

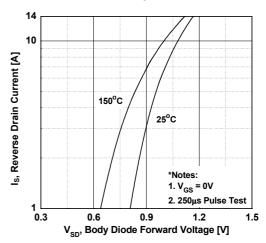
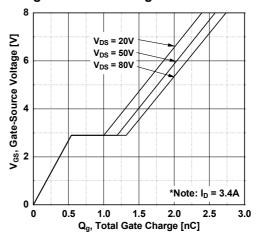



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics - MOSFET (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

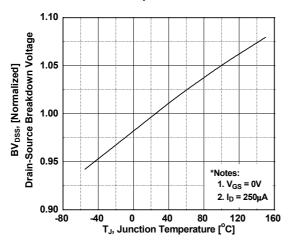


Figure 9. Maximum Safe Operating Area vs. Case Temperature

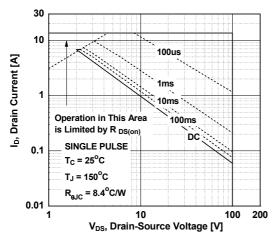


Figure 11. Eoss vs. Drain to Source Voltage

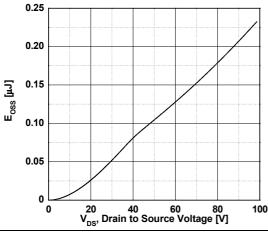


Figure 8. On-Resistance Variation vs. Temperature

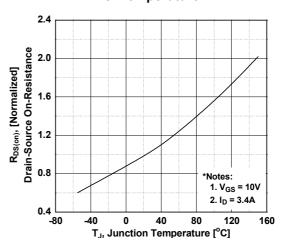


Figure 10. Maximum Drain Current

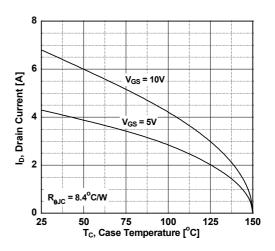
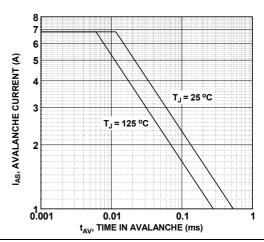



Figure 12. Unclamped Inductive Switching Capability

Typical Performance Characteristics - Diode (Continued)

Figure 13. Forward Voltage Drop vs. Forward Current

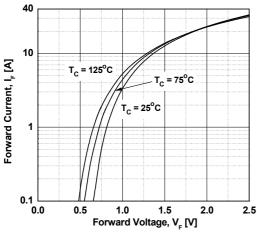


Figure 15. Junction Capacitance

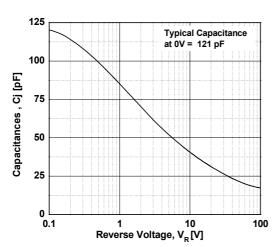


Figure 17. Reverse Recovery Current vs. di/dt

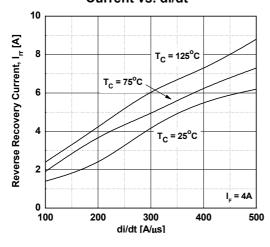


Figure 14. Reverse Current vs. Reverse Voltage

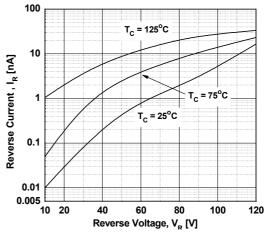


Figure 16. Reverse Recovery Time vs. di/dt

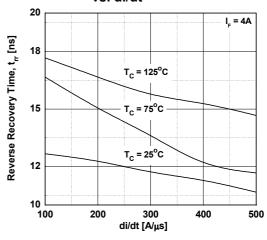
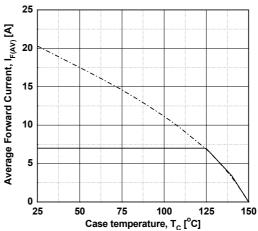
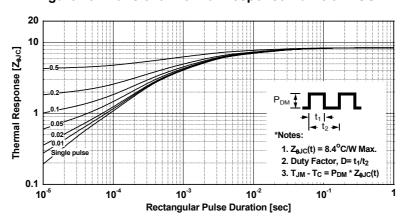
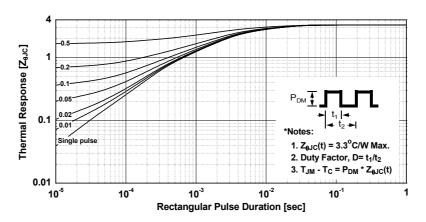
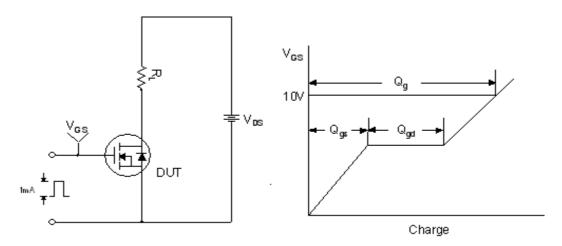
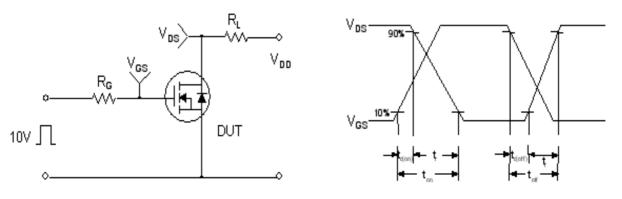



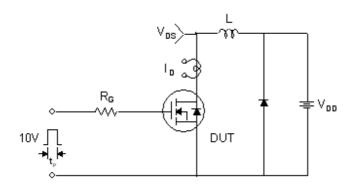
Figure 18. Forward Current Derating Curve

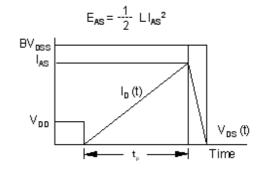
Typical Performance Characteristics (Continued)

Figure 19. Transient Thermal Response Curve of MOSFET

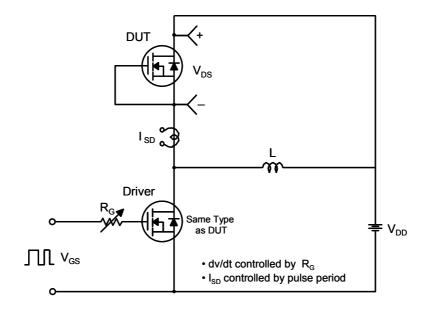




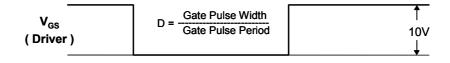

Figure 20. Transient Thermal Response Curve of Diode

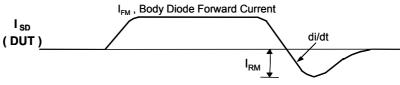

Gate Charge Test Circuit & Waveform

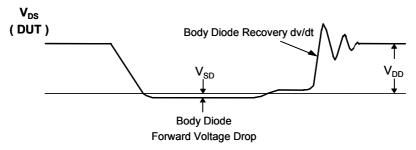


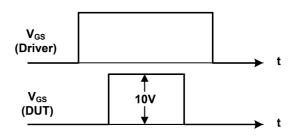
Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms

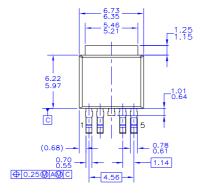


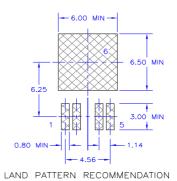

Peak Diode Recovery dv/dt Test Circuit & Waveforms

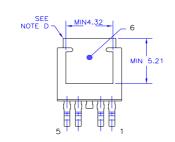


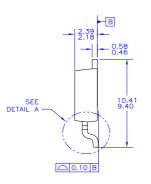
Body Diode Reverse Current

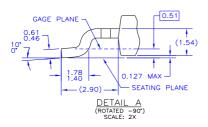
Total Gate Charge Qsync. Test Circuit & Waveforms






$$Qsync = \frac{1}{R_G} \cdot \int V_{R_G}(t) dt$$


Mechanical Dimensions


TO252-5L

- NOTES: UNLESS OTHERWISE SPECIFIED

 A) THIS PACKAGE CONFORMS TO JEDEC, TO-252
 ISSUE E, VARIATION AD, DATED JUNE. 2004.
 B) ALL DIMENSIONS ARE IN MILLIMETERS.
 - C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
 D) HEAT SINK TOP EDGE COULD BE IN CHAMFERD CORNERS OR EDGE PROTRUSION.
 - E) DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ 2Cool™ AccuPower™ F-PFS™ FRFET® AX-CAP® Global Power ResourceSM BitSiC™ Build it Now™

Green Bridge™ Green FPS™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™ Gmax™ GTO™ CROSSVOLTTM CTL™

Current Transfer Logic™ DEUXPEED® IntelliMAX™ ISOPI ANAR™ Marking Small Speakers Sound Louder Dual Cool™

EcoSPARK® and Better™ EfficentMax™ MegaBuck™ MICROCOUPLER™ ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST®

MotionMax™ mWSaver™ OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

PowerTrench® PowerXS™

Programmable Active Droop™ **OFET**

QS™ Quiet Series™ RapidConfigure™ тм

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STFALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

Sync-Lock™ ESYSTEM®* GENERAL TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS. SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164