

JPEG USB DUAL MODE CAMERA CHIP

W99681CF

JPEG USB Dual Mode Camera Chip

Revision History

Revision	Issue Date	Comments
A1	March, 2000	Formal release.
		-
		7. 4° - 1
		3 3 P

Copyright by Winbond Electronics Corp., all rights reserved.

The information in this document has been carefully checked and is believed to be correct as of the date of publication. Winbond Electronics Corp. reserves the right to make changes in the product or specification, or both, presented in this publication at any time without notice.

Winbond assumes no responsibility or liability arising from the specification listed herein. Winbond makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patents, trademark, copyright, or rights of third parties. No license is granted by implication or other under any patent or patent rights of Winbond Electronics Corp.

All other trademarks and registered trademarks are the property of their respective holders.

TABLE OF CONTENTS

1	GENERAL DESCRIPTION	7
2	FEATURES	8
3	PIN CONFIGURATION	10
4	PIN DESCRIPTION	11
4.1 4.2 4.3	PIN DEFINITION PIN LIST POWER-ON RESET INITIALIZATION	16
5	SYSTEM DIAGRAM	18
6	POWER-ON RESET INITIALIZATION	19
7	FUNCTIONAL DESCRIPTION	20
7.1_	VIDEO INPUT INTERFACE	20
	1.1 Camera Control Serial Bus	20
	1.2 Input Video Data Format	
	1.3 Cropping	
	1.4 Scaling.	
	1.5 Filtering 1.6 Captured Video Data Format	22
	DRAM Control and Interface	
	2.1 DRAM CONTROL AND INTERFACE	
	2.2 DRAM Interface	
7.3		
	3.1 Level Shift and Forward DCT	25
	3.2 Quantization	25
	3.3 Huffman Encoding	
	3.4 JPEG Encoding Order	26
7.4	USB INTERFACE AND DEVICE CONTROL	27
7.4	4.1 Endpoints	27
	7.4.1.1 Default Endpoint (Endpoint 0)	.27
	7.4.1.2 Video Data-In Endpoint (Endpoint 1)	.27
	4.2 USB Device Requests	
	7.4.2.1 Standard Device Requests	.27
	7.4.2.2 Video Camera Class-Specific Requests 7.4.2.3 Vendor-Specific Requests	.29
	4.3 Descriptors	
	7.4.3.1 Device Descriptors	
	7.4.3.2 Configuration Descriptors	
	7.4.3.3 String Descriptors	.33
	VIDEO/STILL IMAGE DATA TRANSFER	

	.1 Output Video Data Format	
7.5	·····	
7.5		
7.6	Power Management	
7.6		
7.6	0	
7.6	J	
7.6		
	.5 Resume	
	SERIAL EEPROM INTERFACE	
7.7	.1 EEPROM Data Structure	37
7.7	2 EEPROM Operations	37
7.8	MICROCONTROLLER INTERFACE	39
	.1 Base Address Setup	
7.8	.2 W99681CF Register Access	39
7.8	.3 Microcontroller Interrupt	39
78	A DRAM Access	20
7.8	.5 IHV-Specific Information	40
•	5 IHV-Specific Information	41
8	CONTROL AND STATUS REGISTERS	41
8.1	GENERAL CONTROL REGISTERS	43
8.2	VIDEO INPUT CONTROL REGISTERS	52
8.3	JPEG ENCODER CONTROL REGISTERS	63
9	ELECTRICAL CHARACTERISTICS	70
	ABSOLUTE MAXIMUM RATINGS	
9.2	DC CHARACTERISTICS	
• • • •	.1 USB Transceiver DC Characteristics	
9.2		
	AC CHARACTERISTICS	
9.3	.1 USB Transceiver AC Characteristics	
9.3		
9.3		
9.3		
9.3	.5 DRAM Interface AC Characteristics	74
9.3	.6 EEPROM Interface AC Characteristics	75
9.3	.7 Microcontroller Interface AC Characteristics	76
10	PACKAGE SPEC	77
11	ORDERING INFORMATION	78

LIST OF FIGURES

FIGURE 3.1	W99681CF PIN CONFIGURATION	10
FIGURE 5.1	W99681CF-BASED USB DIGITAL VIDEO CAMERA SYSTEM DIAGRAM	18
FIGURE 6.1	W99681CF BLOCK DIAGRAM	19
FIGURE 7.1	INPUT VIDEO DATA FORMATS	21
FIGURE 7.2	JPEG Encoding Order	26
FIGURE 7.3	DEVICE CONFIGURATION	27
FIGURE 7.4	EEPROM TIMING DIAGRAM	38
FIGURE 9.1	DATA SIGNAL RISE AND FALL TIME	71
FIGURE 9.2	DIFFERENTIAL DATA JITTER	
FIGURE 9.3	DIFFERENTIAL TO EOP TRANSITION SKEW AND EOP WIDTH	71
FIGURE 9.4	RECEIVER JITTER TOLERANCE	72
FIGURE 9.5	RESET TIMING	72
FIGURE 9.6	CLOCK WAVEFORM	73
FIGURE 9.7	INPUT VIDEO TIMING	73
FIGURE 9.8	DRAM INTERFACE INPUT TIMING	74
FIGURE 9.9	DRAM INTERFACE OUTPUT TIMING.	74
FIGURE 9.10	EEPROM INTERFACE TIMING	75
FIGURE 9.11	MICROCONTROLLER INTERFACE TIMING	76
FIGURE 10.1	128L QFP (14x20x2.75mm footprint 3.2mm) Dimensions	77

LIST OF TABLES

TABLE 4.1	W99681CF PIN LIST	16
TABLE 4.2	Power-on Reset Configuration Definitions	17
TABLE 7.1	CAPTURED VIDEO DATA FORMAT	22
TABLE 7.2	SDRAM AND EDO DRAM INTERFACE SIGNALS	23
TABLE 7.3	STANDARD DEVICE REQUESTS	28
TABLE 7.4	W99681CF VENDOR-SPECIFIC REQUESTS	29
TABLE 7.5	W99681CF DEVICE DESCRIPTOR	
TABLE 7.6	W99681CF CONFIGURATION DESCRIPTOR	
TABLE 7.7	W99681CF VIDEO INTERFACE DESCRIPTOR	31
TABLE 7.8	W99681CF DATA-IN ENDPOINT DESCRIPTOR	32
TABLE 7.9	W99681CF VIDEO INTERFACE ALTERNATE SETTING 1-16 INTERFACE DESCRIPTOR	
TABLE 7.10	W99681CF ALTERNATE SETTING 1-16 DATA-IN ENDPOINT DESCRIPTOR	33
TABLE 7.11	THE MAXIMUM DATA PAYLOAD SIZE IN BYTES FOR ALTERNATE SETTINGS	
TABLE 7.12	W99681CF DEFAULT STREAM DESCRIPTORS	33
TABLE 7.13		34
	EEPROM DATA STRUCTURE	
	V99681CF CONTROL REGISTER MAP	
TABLE 9.1 A	BSOLUTE MAXIMUM RATINGS	70
	ISB TRANSCEIVER DC CHARACTERISTICS	
	VIGITAL DC CHARACTERISTICS	
	ISB TRANSCEIVER AC CHARACTERISTICS	
	ESET TIMING	
	CLOCK AC CHARACTERISTICS	
	VPUT VIDEO AC CHARACTERISTICS	
	RAM INTERFACE AC CHARACTERISTICS	
	EPROM INTERFACE AC CHARACTERISTICS	
TABLE 9.10	MICROCONTROLLER INTERFACE AC CHARACTERISTICS	76

1 GENERAL DESCRIPTION

The W99681CF is a digital video processing chip offered by Winbond to facilitate adapterless connection between digital video camera and personal computer for video and still image capturing and editing, video e-mail, and video conferencing applications. Low-cost, high-performance, and high-quality digital video camera can be realized by using Winbond's W99681CF, which includes Universal Serial Bus (USB) technology and the international standard JPEG compression.

The digital video camera is becoming the next great input device for the PC. USB is now a common PC standard for connecting peripheral products, which features low cost, hot-attachable plug and play, adequate 12 Mb/s full speed bandwidth, and simultaneous attachment of multiple devices. The W99681CF has built-in full speed USB controller which benefits from using the isochronous data transfer mode of the USB bus, and which is compliant with the full power management requirements of the USB specification, including startup, operating, and suspend modes. To prevent saturation of the USB bus, the W99681CF uses no more than 8 Mb/s of available bandwidth to ensure the continued operation of other low bandwidth devices such as USB mice and keyboards.

Although USB provides a low-cost solution for low to medium speed peripherals, its 12 Mb/s bandwidth is not enough for high-quality and high-performance digital video camera. High-quality and low-cost compression is necessary to boost frame rate for a high-performance digital video camera. The W99681CF has built-in the baseline JPEG compression, which corresponds to the ISO/IEC international standard 10918-1, with YCbCr4:2:2 or YCbCr4:2:0 components in non-interleaved scan. The baseline JPEG implementation in the W99681CF includes Discrete Cosine Transform (DCT), quantization, zig-zag scan, and Huffman encoder. With JPEG compression, the W99681CF can easily achieve good quality 30 frames per second (fps) in CIF resolution (352×288) and 10~15 fps in VGA resolution (640×480) by consuming no more than 8 Mb/s USB bandwidth.

The W99681CF can accept NTSC, PAL, or VGA video in 8- or 16-bit YCbCr4:2:2 format, square or rectangular pixels, and converts to sub-QCIF (128×96), QCIF (176×144), CIF (128×96), SIF (352×240), 320×240, or VGA (640×480) format. Built-in cropping window control and arbitrary scaling in both the horizontal and vertical directions can serve as the digital pan and zoom over a user-specified region for camera control.

In addition to USB interface, the W99681CF also supports an 8-bit microcontroller interface for portable PC camera applications. Up to 24 still images in 640×480 VGA format can be captured, JPEG compressed, and stored into an external 2 Mbytes Flash memory when in the portable mode.

An on-chip DRAM controller is used to interface to SDRAM or EDO DRAM through a 16-bit data bus. An external serial E²PROM is also supported if IHV-specific Vendor ID and Product ID are needed. The IHV-specific information can be also provided by an external microcontroller if present to save the cost of an E²PROM. The W99681CF is a 3.3 V device with TTL-compatible 3.3 V or 5.0 V I/O, and is packaged in a 128L QFP.

2 **FEATURES**

□ USB Interface

- Fully compliant with USB Specification Revision 1.1
- Supports for full speed devices with maximum 12 Mb/s USB bandwidth
- Uses no more than 8 Mb/s USB bandwidth to prevent saturation of the USB bus
- Provides multiple alternate settings for various isochronous bandwidth consumptions
- Does not use isochronous bandwidth for default alternate setting 0
 Complies with USB power management requirements
 USB Control and Isochronous transfers
 On-chip USB full speed transceivers

- Bus-powered high power devices
- □ Video Compression
- Fully compliant with ISO/IEC 10918-1 international JPEG standard
- On-chip DCT, quantization, zig-zag scan, and Huffman encoder
- Contains two AC and two DC Huffman code tables, and two programmable guantization tables
- Supports baseline sequential mode in YCbCr4:2:2 or YCbCr4:2:0 non-interleaved scan
- Encodes in sub-QCIF (128x96), QCIF (176x144), CIF (352x288), SIF (352x240), 320x240, or VGA (640x480) picture format
- Encodes sub-QCIF/QCIF/CIF/SIF/320x240 format at 30 frames per second (fps), VGA format at 10~15 fps

□ Video Pre-processing

- Direct connect to digital camera through an 8- or 16-bit data bus
- Glueless interface to NTSC/PAL TV decoder
- Input video format compliant with YCbCr 4:2:2 CCIR 601 standard
- Built-in cropping, arbitrary scaling, and filtering functions for digital pan and zoom camera control

Video Output

- Video output can be either compressed bit stream or original video
- Compressed bit stream is fully compliant with ISO baseline JPEG standard in YCbCr4:2:2 or YCbCr4:2:0 non-interleaved scan
- Original video output can be in YCbCr4:2:2 or YCbCr4:2:0 packed format

DRAM Interface

- Supports SDRAM or 1-cycle EDO DRAM
- Supports SDRAM Self Refresh
- Supports 16-bit DRAM interface in 0.5, 1, 2 or 4 Mbytes configuration 33 m.C
- □ Serial EEPROM Interface
- Supports optional 1K (128×8) serial EEPROM for IHV-specific Vendor ID and Product ID
- □ Supports Hardware and Software Snap Shot
- **U** Supports 8-bit Microcontroller Interface for Portable PC Camera Applications
- □ Built-in PLL (Phase-Locked Loops) Clock Synthesizer
- Operating Frequency is 48 MHz with Video Input Frequency of 13.5 MHz (typical)
- □ 3.3 V Device with TTL-compatible 3.3 V or 5.0 V I/O
- □ 128L QFP Package

3 PIN CONFIGURATION

The W99681CF is packaged in a 128L QFP. The pin configuration is shown in Figure 3.1.

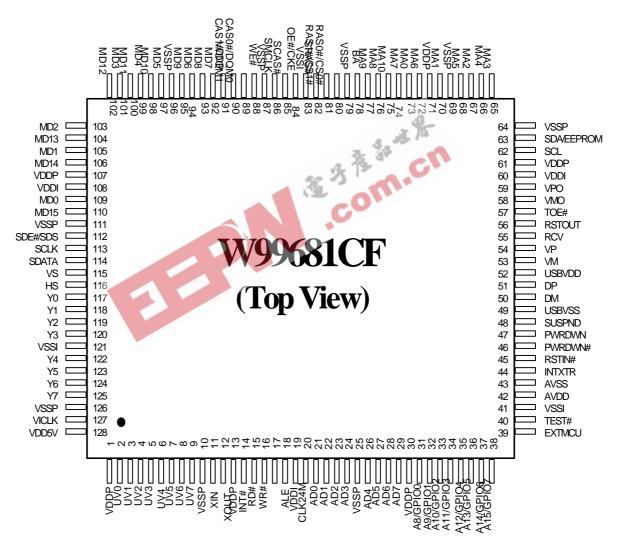


Figure 3.1 W99681CF Pin Configuration

PIN DESCRIPTION 4

The following signal types are used in these descriptions.

- L Input pin
- IU Input pin with internal pull-up resistor
- В Bi-directional input/output pin
- 0 Output pin
- AIO Analog input/output pin
- Ρ Power supply pin
- G Ground pin
- # Active low

4.1 **Pin Definition**

USB and External Transceiver Interface (8 pins)

	5 1 1 1		
P Pov	wer supply pin		
G Gro	ound pin		a la
# Act	ive low		7 3 4
4.1 Pin Definition USB and External Transceiver Inter			ce (8 pins)
Pin Name	Pin Number	Туре	Description
DM	50	AIO	Data Minus line of differential USB upstream port.
DP	51	AIO	Data Plus line of differential USB upstream port.
			Note: provide an external 1.5 K Ω pull-up resistor at DP so the device indicates to the host that it is a full-speed device.
VM	53	IU	Single-ended Receiver Input of the data minus line.
VP	54	IU	Single-ended Receiver Input of the data plus line.
RCV	55	IU	Differential Receiver Input.
TOE#	57	0	Output Enable for external transceiver.
VMO	58	0	Data Minus Output to the differential driver.
VPO	59	0	Data Plus Output to the differential driver.

DRAM Interface (37 pins)

Pin Name	Pin Number	Туре	Description
MD[15:0]	92-95, 97-106, 109-110	В	Data Bus.
MA[10:0]	65-68, 70, 72-	0	Address Bus.
	77		Note: for SDRAM, MA[10:0] are sampled during the ACTIVE

			command (row address MA[10:0]) and READ/WRITE command (column address MA[7:0], with MA10 defining AUTO PRECHARGE) to select one location out of the 521K available in the respective bank. MA10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (MA10 HIGH).
BA	78	0	EDO DRAM: Not used.
			SDRAM: Bank Address Input. BA defines to which internal bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied. BA is also used to program the 12th bit of the Mode Register.
RAS[1:0]#	80, 81	0	EDO DRAM: Row Address Strobes.
CS[1:0]#			SDRAM: Chip Select. CS# enables the command decoder for the SDRAM.
CAS[1:0]#	89, 90	0	EDO DRAM: Column Address Strobes.
DQM[1:0]			SDRAM: Input/Output Mask. DQM[1:0] are input mask signals for write accesses and output enable signals for read accesses. DQM0 corresponds to MD[7:0]; DQM1 corresponds to MD[15:8].
OE#	84	0	EDO DRAM: Output Enable.
CKE	- 3		SDRAM: Clock Enable. CKE activates the SMCLK signal. The SDRAM enters precharge power-down to deactivate the input and output buffers, excluding CKE, for maximum power saving when CKE is LOW coincident with a NOP.
WE#	88	0	EDO DRAM: Write Enable.
			SDRAM: Command Input. SRAS#, SCAS#, and WE# (along with CS#) define the command being entered.
SRAS#	82	0	EDO DRAM: Not used.
			SDRAM: Command Input. SRAS#, SCAS#, and WE# (along with CS#) define the command being entered.
SCAS#	85	0	EDO DRAM: Not used.
			SDRAM: Command Input. SRAS#, SCAS#, and WE# (along with CS#) define the command being entered.
SMCLK	86	0	EDO DRAM: Not used.
			SDRAM: Clock.

Input Video Interface (22 pins)

Pin Name	Pin Number	Туре	Description
Y[7:0]	117-120, 122- 125	I	Digital Y (Luminance) Inputs in 16-bit Mode, or Digital YUV Inputs in 8-bit Mode.

UV[7:0]	2-9	I	Digital UV (Chrominance) Inputs in 16-bit Mode, or Not Used in 8-bit Mode.
HS	116	I	Horizontal Sync Input. Programmable polarity.
VS	115	I	Vertical Sync Input. Programmable polarity.
VICLK	127	Ι	Input Video Clock.
SDE#/SDS	112	0	Serial Data Enable/Serial Data Strobe.
SCLK	113	В	Serial Interface Clock.
SDATA	114	В	Serial Interface Data.

Micro Controller Interface (21 pins)

Pin Name	Pin Number	Туре	Description
AD[7:0]	21-24, 26-29	В	Multiplexed Address/Data Bus.
A[15:8]	31-38	I	EXTMCU = 1: High-order Address Bus.
GPIO[7:0]		В	EXTMCU = 0: General Purpose I/Os.
ALE	18		Address Latch Enable. ALE is used to enable the address latch that separates the address from the data on AD bus.
RD#	15	IU	Data Read Strobe.
WR#	16	IU	Data Write Strobe.
CS#	17	IU	EXTMCU = 1: Chip Select.
SANP#			EXTMCU = 0: Snap Shot Input.
INT#	14	0	Interrupt Output, level-triggered.

3 Ar

Serial E²PROM Interface (2 pins)

Pin Name	Pin Number	Туре	Description
SCL	62	0	Serial Clock.
SDA/EEPRO M	63	В	Serial Data/Serial E ² PROM Detection. During a reset operation, the W99681CF samples this signal to see if an external E ² PROM exists. A 10K ohm pull-up resistor should be used if an external E ² PROM is used; otherwise it should be tied to VSS.

Miscellaneous (11 pins)

Pin Name Pin Number Type Description	
--------------------------------------	--

XIN	11	I	Reference frequency input from a crystal or a clock source. It should be 48 Mhz if PLL is off (PLLSEL = 0) or 12 Mhz if PLL is on (PLLSEL = 1) for full-speed device.		
XOUT	12	0	Oscillator output to a crystal. This pin is left unconnected if an external clock source is employed.		
CLK24M	20	0	24 Mhz Clock Output.		
EXTMCU	39	Ι	External Micro Controller (MCU). 0: no; 1: yes.		
TEST#	40	IU	Test Input.		
INTXTR	44	Ι	Internal USB Transceiver Select. 0: off; 1: on.		
RSTIN#	45	IU	System Reset Input.		
PWRDWN#	46	0	Low-active Power Down Control. This pin is active upon reset, suspended, or when the Camera Power-on Control register (CR00_4) is 0. Once active, it remains active until the CR00_4 is set to 1.		
PWRDWN	47	0	High-active Power Down Control. This pin is active upon reset, suspended, or when the Camera Power-on Control register (CR00_4) is 0. Once active, it remains active until the CR00_4 is set to 1.		
SUSPND	48	0	USB Suspend Mode. This pin is active when the W99681CF is in the suspend mode. It is cleared to 0 when the W99681CF is resumed, or reset by RSTIN# pin or a USB reset command.		
RSTOUT	56	0	Reset Output. This pin is active when RSTIN# pin is active, or a USB reset command is received.		

Power and Ground (27 pins)

Pin Name	Pin Number	Туре	Description
VDD5V	128	Р	5V Buffer Power Supply. Provide 5V power to the I/O buffers for 5V input tolerance. +4.4 V \sim +5.25 V.
VDDP	1, 13, 30, 61, 71, 91, 107	Р	Buffer Power Supply. Provide isolated power to the I/O buffers for improved noise immunity. +3.3 V \pm 0.3 V.
VSSP	10, 25, 64, 69, 79, 87, 96, 111, 126	G	Buffer Ground.
USBVDD	52	Р	USB Transceiver Power Supply. +3.3 V \pm 0.3 V.
USBVSS	49	G	USB Transceiver Ground.
AVDD	42	Р	PLL Power Supply. +3.3 V \pm 0.3 V.
AVSS	43	G	PLL Ground.
VDDI	19, 60, 108	Р	Core Logic Power Supply. +3.3 V \pm 0.3 V.

VSSI	41, 83, 121	G	Core Logic Ground.

4.2 Pin List

Table 4.1 W99681CF Pin List

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	VDDP	33	A10/GPIO2	65	MA3	97	MD5
2	UV0	34	A11/GPIO3	66	MA4	98	MD10
3	UV1	35	A12/GPIO4	67	MA2	99	MD4
4	UV2	36	A13/GPIO5	68	MA5	100	MD11
5	UV3	37	A14/GPIO6	69	VSSP	101	MD3
6	UV4	38	A15/GPIO7	70	MA1	102	MD12
7	UV5	39	EXTMCU	71	VDDP 🔬	103	MD2
8	UV6	40	TEST#	72	MA6	104	MD13
9	UV7	41	VSSI	73	MAO	105	MD1
10	VSSP	42	AVDD	74 🔥	MA7	106	MD14
11	XIN	43	AVSS	75	MA10	107	VDDP
12	XOUT	44	INTXTR	76	MA8	108	VDDI
13	VDDP	45	RSTIN#	77 🦯	MA9	109	MD0
14	INT#	46	PWRDWN#	78	BA	110	MD15
15	RD#	47	PWRDWN	79	VSSP	111	VSSP
16	WR#	48	SUSPND	80	RAS0#/CS0#	112	SDE#/SDS
17	CS#/SNAP#	49	USBVSS	81	RAS1#/CS1#	113	SCLK
18	ALE	50	DM	82	SRAS#	114	SDATA
19	VDDI	51	DP	83	VSSI	115	VS
20	CLK24M	52	USBVDD	84	OE#/CKE	116	HS
21	AD0	53	VM	85	SCAS#	117	Y0
22	AD1	54	VP	86	SMCLK	118	Y1
23	AD2	55	RCV	87	VSSP	119	Y2
24	AD3	56	RSTOUT	88	WE#	120	Y3
25	VSSP	57	TOE#	89	CAS0#/DQM0	121	VSSI
26	AD4	58	VMO	90	CAS1#/DQM1	122	Y4
27	AD5	59	VPO	91	VDDP	123	Y5
28	AD6	60	VDDI	92	MD7	124	Y6
29	AD7	61	VDDP	93	MD8	125	Y7
30	VDDP	62	SCL	94	MD6	126	VSSP
31	A8/GPIO0	63	SDA/EEPROM	95	MD9	127	VICLK
32	A9/GPIO1	64	VSSP	96	VSSP	128	VDD5V

Note 1. All output and bi-directional pins, except XOUT pin, are tri-stated during reset.

4.3 Power-on Reset Initialization

During power-on reset, states of the memory data lines MD[7:0] are latched into the W99681CF's internal configuration registers as device configuration information. Since each pin of MD[7:0] is internally pulled up on its I/O buffer, no external pull-up resistor is required. For pull-down, a 4.7K ohm resistor is recommended. Table 4.2 describes the power-on reset configuration definitions.

MD Bit	Value	Definition	Conf Reg
MD7	0	Normal operation	CR00_15
	1	Force suspend mode if suspend mode is enabled	
MD6	0	Suspend mode is disabled	CR00_14
	1	Suspend mode is enabled	
MD5	0	Isochronous handshake phase is enabled	CR00_13
	1	Isochronous handshake phase is disabled	
MD4	0	Internal RCV comes from SIE	CR00_12
	1	Internal RCV comes from USB Transceiver	
MD3	0	PLL Disable	CR00_11
	1	PLL Enable	
MD2	0	Low Power, Bus-powered Devices	CR00_10
	1	High Power, Bus-powered Devices	
MD1	0	EDO DRAM	CR00_9
	1	SDRAM	
MD0	0	256Kx DRAM	CR00_8
	1	1Mx DRAM	

Table 4.2 Power-on Reset Configuration Definitions

5 SYSTEM DIAGRAM

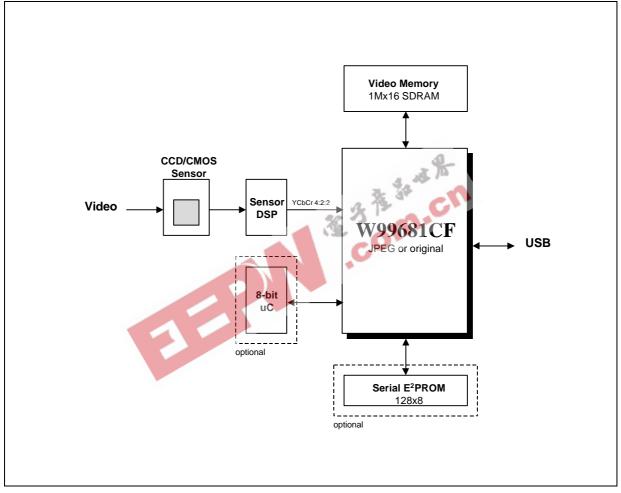


Figure 5.1 W99681CF-Based USB Digital Video Camera System Diagram

6 BLOCK DIAGRAM

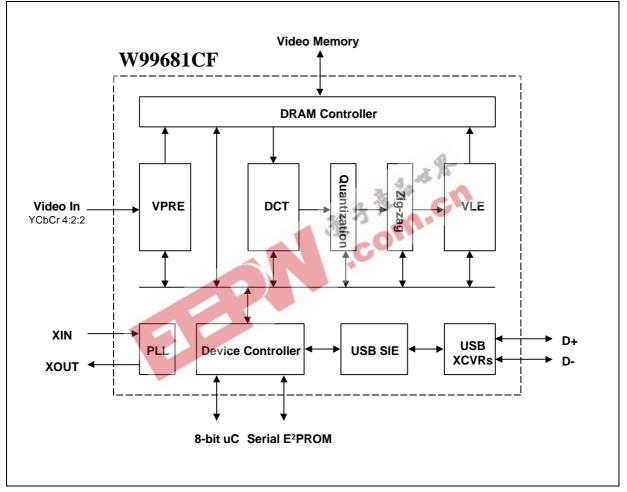


Figure 6.1 W99681CF Block Diagram

7 FUNCTIONAL DESCRIPTION

7.1 Video Input Interface

Video input data is cropped, down-scaled, and filtered in the video pre-processing (VPRE) block, then is stored into the DRAM as captured video for the following JPEG compression and transfer.

7.1.1 Camera Control Serial Bus

A dedicated programmable serial bus is supported for camera control. The serial bus includes SCLK, SDATA, and SDE#/SDS signals. During serial bus read, these signals are controlled by the host via bits 4-0 of the Serial Bus Control register (CR01_4-0).

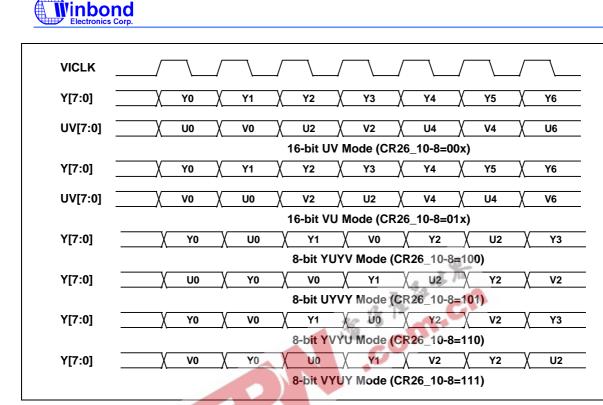
There are two serial bus write modes which are controlled by bit 5 of the Serial Bus Control register (CR01_5).: normal serial bus write mode (CR01_5 = 0) and fast serial bus write mode (CR01_5 = 1).

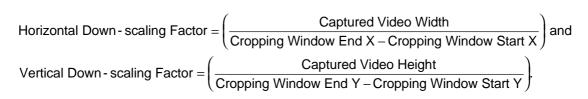
Normal serial bus write mode (CR01_5 = 0): SDATA and SCLK signals are output from CR01_1-0 directly.

Fast serial bus write mode (CR01_5 = 1): SDATA and SCLK signals are output from CR06-CR09 in about 400 Khz bit frequency.

7.1.2 Input Video Data Format

The W99681CF accepts video data in YUV 4:2:2 format through a 16-bit (Y[7:0] and UV[7:0]) or 8-bit (Y[7:0]) data bus. Many YUV ordering formats are supported which are selected by bits 9-8 of the Video Capture Control register (CR26) as shown in Figure 7.1. Video data can be latched by the W99681CF by using either rising-edge or falling-edge of the VICLK clock signal. In the 8-bit modes the VICLK frequency is twice the pixel rate, only Y[7:0] pins are used for video data input and UV[7:0] pins are not used.




Figure 7.1 Input Video Data Formats

7.1.3 Cropping

A cropping rectangle (or window) is supported for cropping or clipping the incoming video data. Only interested video data located inside the cropping rectangle is processed and sent to the host system. The cropping rectangle can be moved within the input rectangle by programming the Cropping Window Start X and Cropping Window Start Y registers. Cropping is performed based on the VS signal for vertical cropping and HS signal for horizontal cropping. Both VS and HS are programmable polarity for maximum flexibility.

7.1.4 Scaling

The cropped video can be down-scaled horizontally and/or vertically. The horizontal down-scaling and vertical down-scaling are performed independently by using two DDAs (Digital Differential Accumulator) with

The W99681CF does not perform up-scaling during video pre-processing. To produce CIF format from 240-line video for the JPEG compression, a special vertical up-scaling can be performed by the JPEG

encoder. For the original video transfer, the CIF format from 240-line video can be produced by the software driver.

7.1.5 Filtering

A 3-tap or 5-tap FIR filter is used to reduce noise and aliasing artifacts produced by the CCD or CMOS sensor, and the scaling process.

7.1.6 Captured Video Data Format

After cropped, down-scaled, and filtered in the video pre-processing (VPRE) block, the input video is stored into the DRAM as captured video. Four different formats are supported for the captured video: YUV4:2:2 packed, YUV4:2:0 packed, YUV4:2:2 planar, and YUV4:2:0 planar modes, which are selected by bits 1-0 of the Video Capture Control register (CR26) as described in Table 7.1. YUV4:2:2 and YUV4:2:0 packed modes are used for original video transfer, while YUV4:2:2 and YUV4:2:0 planar modes are used for JPEG compression video transfer.

Table 7.1 Captured Video Data Format

	Used for JPEG compression video transfer. Captured Video Data Format
CR26_1-0	Captured Video Data Format
00	YUV4:2:2 packed mode for original video transfer
01	YUV4:2:0 packed mode for original video transfer
10	YUV4:2:2 planar mode for JPEG compression video transfer
11	YUV4:2:0 planar mode for JPEG compression video transfer

7.2 DRAM Control and Interface

The W99681CF supports 256K×16 and 1M×16 SDRAM or EDO DRAM in a 0.5 ~ 4 Mbytes configuration with 16-bit data bus. A single 1M×16, -15 or above, SDRAM is recommended for better cost/performance.

7.2.1 DRAM Access Arbitration

The DRAM arbiter helps to maximize performance by orchestrating memory access requests from internal engines. Two priority levels are defined for these requests:

- First priority: DRAM refresh request and SDRAM mode register write request
- Second priority: Capture FIFO write request, DCT read request, VLE read request, VLE FIFO write request, USB FIFO read request, and USB control read/write request

Programmable FIFO status are provided by the Capture FIFO, VLE FIFO, and USB FIFO such that the DRAM Controller arbitrates according to these FIFO status to prevent any video data loss and to achieve the best performance.

7.2.2 DRAM Interface

The DRAM controller provides many programmable controls for the DRAM operations which include:

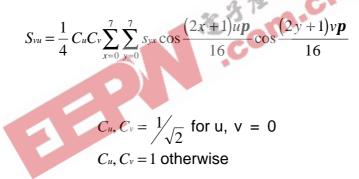
- DRAM Type: supports SDRAM and EDO DRAM
- DRAM Address: programmable 9-bit (256K× EDO DRAM), 10-bit (1M× EDO DRAM or 256K× SDRAM), and 12-bit (1M× SDRAM) address
- DRAM Timing: adjustable Trp, Trcd, Tras, and Tcas timings
- DRAM Refresh: 1 ~ 8 refresh cycles per scan line
- SDRAM Read Latency: 1 ~ 3 clocks
- SDRAM Burst Type: sequential or interleaved
- SDRAM Burst Length: 1, 2, 4, 8, or full page
- SDRAM Self Refresh

Table 7.2 shows the interface signals for SDRAM and EDO DRAM.

Pin Name	256K1 EDO DRAM	1M´ EDO DRAM	256K ² SDRAM	1M ² SDRAM
MD[15:0]	MD[15:0]	MD[15:0]	MD[15:0]	MD[15:0]
MA[10:0]	MA[8:0]	MA[9:0]	MA[8:0]	MA[10:0]
BA			BA	BA
RAS[1:0]#/CS[1:0]#	RAS[1:0]#	RAS[1:0]#	CS[1:0]#	CS[1:0]#

Table 7.2 SDRAM and EDO DRAM Interface Signals

CAS[1:0]#/DQM[1:0]	CAS[1:0]#	CAS[1:0]#	DQM[1:0]	DQM[1:0]
OE#/CKE	OE#	OE#	CKE	CKE
WE#	WE#	WE#	WE#	WE#
SRAS#			SRAS#	SRAS#
SCAS#			SCAS#	SCAS#
SMCLK			SMCLK	SMCLK



7.3 JPEG Compression

The W99681CF supports JPEG baseline sequential process for video data compression. For the sequential DCT-based mode, 8×8 sample blocks are typically input block by block from left to right, and block-row by block-row from top to bottom. Each block is transformed by the forward DCT (FDCT) into a set of 64 values referred to as DCT coefficients. Each of the 64 coefficients is then quantized using one of 64 corresponding values from a quantization table. After quantization, the DC coefficients and the 63 AC coefficients are converted into a one-dimensional zig-zag sequence, then are passed to a Huffman encoder for entropy encoding procedure which compresses the data further.

7.3.1 Level Shift and Forward DCT

Prior to computing the FDCT the input data are level shifted to a signed two's complement representation. For 8-bit precision the level shift is achieved by subtracting 128. The following equation specifies the mathematical definition of the FDCT.

where

7.3.2 Quantization

After the FDCT is computed for a block, each of the 64 resulting DCT coefficients is quantized by a uniform quantizer. The uniform quantizer is defined by the following equation. Rounding is to the nearest integer:

$$Sq_{vu} = round\left(\frac{S_{vu}}{Q_{vu}}\right)$$

The quantizer step size for each coefficient S_{vu} is the value of the corresponding element Q_{vu} from the quantization table. The W99681CF supports two programmable quantization tables, luminance quantization table and chrominance quantization table, which are made by two internal 64×8 SRAMs, and which should be loaded by the host via the USB bus before start of the JPEG compression.

The quantized DCT coefficient values are signed, two's complement integers with 11-bit precision for 8-bit input precision.

7.3.3 Huffman Encoding

After quantization, the quantized coefficients are converted to the zig-zag sequence for Huffman encoding. The DC coefficients are coded differently from the AC coefficients. The value that should be encoded is the difference (DIFF) between the quantized DC coefficient of the current block (DC_i which is also designated as Sq_{00}) and that of the previous block of the same component (PRED):

$$DIFF = DC_i - PRED$$

At the beginning of the scan and at the beginning of each restart interval, the prediction for the DC coefficient prediction is initialized to 0.

For the AC coefficient encoding, since many AC coefficients are zero, runs of zeros are identified and coded efficiently. In addition, if the remaining coefficients in the zig-zag sequence order are all zero, this is coded explicitly as an end-of-block (EOB).

The W99681CF Huffman encoder employs two DC and two AC Huffman tables within one scan for luminance and chrominance components.

7.3.4 JPEG Encoding Order

The W99681CF JPEG encoder supports two non-interleaved encoding orders shown in Figure 7.2:

- YUV4:2:2 non-interleaved encoding order
- YUV4:2:0 non-interleaved encoding order

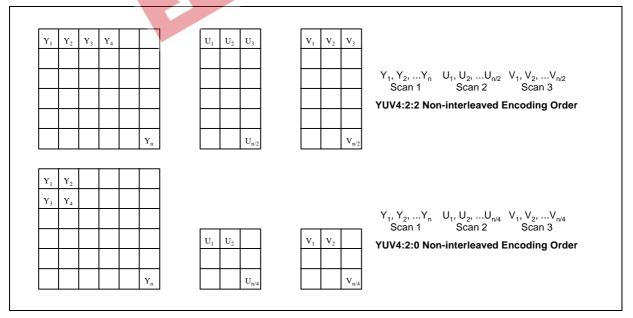
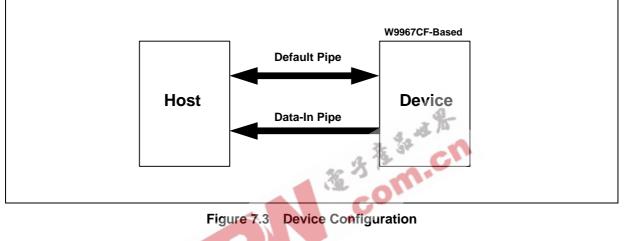



Figure 7.2 JPEG Encoding Order

7.4 USB Interface and Device Control

The W99681CF contains two endpoints: default and Video Data-In endpoints. Figure 7.3 shows the device configuration for the W99681CF-based USB digital video camera.

7.4.1 Endpoints

7.4.1.1 Default Endpoint (Endpoint 0)

The default endpoint uses control transfers as defined in the USB specification. The default endpoint provides access to the W99681CF-based device's configuration, status, and control information by sending standard, class, and vendor-specific requests to the device, an interface, or an endpoint.

7.4.1.2 Video Data-In Endpoint (Endpoint 1)

The Video Data-In endpoint is used to receive video image data from the device intended for delivery to a video capture application on the host. The Video Data-In endpoint uses isochronous transfers. The direction is always IN. The maximum packet size can be varied for different alternate settings for limited USB bandwidth.

7.4.2 USB Device Requests

The W99681CF responds to requests from the host on the default pipe. The W99681CF supports standard, class, and vendor-specific USB device requests.

7.4.2.1 Standard Device Requests

The W99681CF supports the standard USB device requests as shown in Table 7.3 and described below. It responds to standard device requests whether it has been assigned a non-default address or is currently configured. If any unrecognized or unsupported standard request is received, it returns STALL.

Table 7.3 Standard Device Requests

bmRequestType	bRequest	wValue	wIndex	wLength	Data
00000010B	CLEAR_FEATURE (1)	Feature Selector	Endpoint	Zero	None
		(0)			
1000000B	GET_CONFIGURATION (8)	Zero	Zero	One	Configurati- on Value
1000000B	GET_DESCRIPTOR (6)	Descriptor Type and Descriptor Index	Zero or Language ID	Descriptor Length	Descriptor
10000001B	GET_INTERFACE (10)	Zero	Interface (0)	One	Alternate Setting
1000000B	GET_STATUS (0)	Zero	Zero	Two	Device,
1000001B			Interface		Interface, or Endpoint
10000010B		_ CO.	Endpoint		Status
0000000B	SET_ADDRESS (5)	Device Address	Zero	Zero	None
0000000B	SET_CONFIGURATION (9)	Configura -tion Value	Zero	Zero	None
0000000B	SET_DESCRIPTOR (7)				
	(Not Supported)				
00000010B	SET_FEATURE (3)	Feature Selector (0)	Endpoint	Zero	None
00000001B	SET_INTERFACE (11)	Alternate Setting	Interface (0)	Zero	None
00000010B	SYNCH_FRAME (12)				
	(Not Supported)				

Clear Feature

The W99681CF supports the following Clear Feature request:

• When directed to an endpoint recipient for ENDPOINT_STALL

The W99681CF returns STALL if any unrecognized or unsupported Clear Feature request is received.

Get Configuration The W99681CF returns zero if it is unconfigured or the bConfiguration value defined in the Configuration Descriptor is configured.

Get Descriptor The W99681CF supports Get Descriptor requests for standard descriptors (Device, Configuration, and String). The W99681CF returns STALL if a Get Descriptor request is received for a class-specific descriptor or a vendor-specific descriptor, is unrecognized or unsupported.

Get Interface The W99681CF supports a Get Interface request for Interface 0 by returning the selected alternate setting. The default alternate setting is zero. The W99681CF returns STALL for a Get Interface request for any other Interface or any Get Interface request before the Device is configured.

Get Status The W99681CF supports a Get Status directed at the device, Interface 0, or any defined endpoint (default or Video Data-In). The W99681CF returns STALL if a Get Status request is received for Interface 0 or any defined endpoint before the Device is configured, or if a Get Status request is request is received for any unrecognized or unsupported recipient.

Set Address The W99681CF supports a Set Address request to change the Device Address from the default address (zero) to a unique address.

Set Configuration The W99681CF supports Set Configuration requests to set the Device Configuration to zero (unconfigured) or the bConfiguration value defined in the Configuration Descriptor. The W99681CF returns STALL if a Set Configuration request is received with any other value.

Set Descriptor The W99681CF does not support update for any defined Descriptor (Device, Configuration, Interface, Endpoint, or String). It returns STALL for any Set Descriptor request.

Clear Feature The W99681CF supports the following Set Feature request:

• When directed to an endpoint recipient for ENDPOINT_STALL

The W99681CF returns STALL if any unrecognized or unsupported Set Feature request is received.

Set Interface When configured, the W99681CF supports a Set Interface request to Interface 0 for defined Alternate Settings. This request allows the host to select the desired alternate setting. The W99681CF returns STALL for any other Set Interface request.

Synch Frame The W99681CF returns STALL for any Synch Frame request.

7.4.2.2 Video Camera Class-Specific Requests

Currently, there is no class-specific request is defined for the video camera devices. The W99681CF returns STALL for any class-specific request.

7.4.2.3 Vendor-Specific Requests

The W99681CF supports two vendor-specific requests for the control registers In/Out transfers on the default pipe (Endpoint 0): Get W99681CF Control and Set W99681CF Control. The vendor-specific requests defined for the W99681CF are shown in Table 7.4. The W99681CF returns STALL if an unrecognized or unsupported vendor-specific request is received.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
11000000B	GET_W99681CF_CONTROL (1)	Zero	Index ¹	Length ²	Data

Table 7.4 W99681CF Vendor-Specific Requests

0100000B SET_W99681CF_CONTROL (0)	Data0 ³	Index ¹	Length ²	Data
-----------------------------------	--------------------	--------------------	---------------------	------

- Note 1. Index specifies the starting index of the control registers to be accessed. An index counter, loaded with the Index value, will be incremented by one after every two bytes of data transferred.
- Note 2. Length specifies number of data bytes transferred during the second phase of the control transfer. It should be an even number value. If this field is zero, there is no data transfer phase.
- Note 3. Data0 is a word-sized data to be programmed into the control register indexed by the Index field, no matter the Length field is zero or not. The internal index counter will be incremented by one once Data0 is transferred.

Get W99681CF Control The W99681CF supports a Get W99681CF Control request for W99681CF control registers IN transfer. Length field should be an even number value. The W99681CF returns STALL for any unrecognized or unsupported Get W99681CF Control request.

Set W99681CF Control The W99681CF supports a Set W99681CF Control request for W99681CF control registers OUT transfer. Length field should be an even number value. If the Length field is zero, only Data0 is transferred with no data transfer phase. The W99681CF returns STALL for any unrecognized or unsupported Set W99681CF Control request.

7.4.3 Descriptors

The W99681CF supports the standard USB descriptors as described below. The W99681CF returns STALL if a request is received for any unrecognized or unsupported standard descriptor.

7.4.3.1 Device Descriptors

The W99681CF returns a Device Descriptor with the values shown in Table 7.5.

Offset	Field	Size	Value	Description
0	bLength	1	0x12	Size of this descriptor in bytes
1	bDescriptorType	1	0x01	Device Descriptor Type
2	bcdUSB	2	0x0110	USB Specification Release Number in BCD
4	bDeviceClass	1	0x00	Class code
5	bDeviceSubClass	1	0x00	Subclass code
6	bDeviceProtocol	1	0x00	Protocol code
7	bMaxPacketSize0	1	0x08	Maximum packet size for endpoint zero
8	idVendor	2	0x1046	Vendor ID
10	idProduct	2	0x9967	Product ID
12	bcdDevice	2	0x0110	Device release number in BCD
14	iManufacturer	1	0x01	Index of string descriptor describing manufacturer
15	iProduct	1	0x02	Index of string descriptor describing product

Table 7.5 W99681CF Device Descriptor

16	iSerialNumber	1	0x00	Index of string descriptor describing the device's serial number
17	bNumConfigurations	1	0x01	Number of possible configurations

Note 1. Vendor ID and Product ID will be replaced with bytes 0-3 of an external serial E²PROM or uC if present.

7.4.3.2 Configuration Descriptors

The W99681CF returns a Configuration Descriptor and other configuration related descriptors as described below. When the host requests the Configuration Descriptor, all related interface and endpoint descriptors are returned.

Table 7.6	6 W99681CF Configurat	ion Desc	riptor	4
Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x02	Configuration Descriptor Type
2	wTotalLength	2	0x0119	Total length of data returned for this configuration. Includes the combined length of all descriptors returned for this configuration.
4	bNumberInterfaces	1	0x01	Number of interfaces supported by this configuration
5	bConfigurationValue	1	0x01	Value used as an argument to Set Configuration to select this configuration
6	iConfiguration	1	0x00	No configuration string
7	bmAttributes	1	0x80	Configuration characteristics
8	Maxpower	1	0xFA or 0x32 (Note 1)	Maximum power consumption from the bus when the device is fully operational. Expressed in 2 mA units.

Table 7.6 W99681CF Configuration Descriptor

Note 1. Value of this field is 0xFA (500 mA) for high power devices (CR00_10 = 1), or 0x32 (100 mA) for low power devices $(CR00_{10} = 0)$.

	Table 7.7	W99681CF Video Interface Descriptor
--	-----------	-------------------------------------

Offset	Field	Size	Value	Description
0	bLength	1	0x09	Size of this descriptor in bytes
1	bDescriptorType	1	0x04	Interface Descriptor Type
2	bInterfaceNumber	1	0x00	Number of interface
3	bAlternateSetting	1	0x00	Default alternate setting zero
4	bNumEndpoints	1	0x01	Number of endpoints used by this interface
5	bInterfaceClass	1	0x00	Image interface class code

6	bInterfaceSubClass	1	0x00	Digital Video Camera subclass code
7	bInterfaceProtocol	1	0x00	Protocol code. No class specific protocol.
8	ilnterface	1	0x00	No interface string

Table 7.8 W99681CF Data-In Endpoint Descriptor

Offset	Field	Size	Value	Description		
0	bLength	1	0x07	Size of this descriptor in bytes		
1	bDescriptorType	1	0x05	Endpoint Descriptor Type		
2	bEndpointAddress	1	0x81	Endpoint number. Direction is set to IN.		
3	bmAttributes	1	0x01	Isochronous transfer type		
4	wMaxPacketSize	2	0x00	Default zero bandwidth		
6	bInterval	1	0x01	Interval in milliseconds for polling endpoint for data transfers		

The W99681CF Video interface includes 16 alternate settings that allow the Data-In endpoint bandwidth to be varied decreasingly from 8 Mbps down to 0.5 Mbps in descending 0.5 Mbps steps such that the device driver can request subsequently smaller bandwidth quantities. A separate interface descriptor and its associated endpoint are included for each setting. When the host requests the Configuration Descriptor, all 16 pairs of interface and endpoint descriptors for alternate setting should follow the interface and endpoint descriptors for the default alternate setting zero.

The W99681CF supports the Get Interface and Set Interface requests to report or select a specific alternate setting for the Video interface.

Offset	Field	Size Value		Description		
0	bLength	1	0x09	Size of this descriptor in bytes		
1	bDescriptorType	1	0x04	Interface Descriptor Type		
2	bInterfaceNumber	1	0x00 Number of interface			
3	bAlternateSetting	1	1-16 Alternate setting 1-16 for this interface (Note 1)			
4	bNumEndpoints	1	0x01	Number of endpoints used by this interface		
5	bInterfaceClass	1	0x00	Image interface class code		
6	bInterfaceSubClass	1	0x00	Digital Video Camera subclass code		
7	bInterfaceProtocol	1	0x00	Protocol code. No class specific protocol.		
8	ilnterface	1	0x00	No interface string		

Table 7.9 W99681CF Video Interface Alternate Setting 1-16 Interface Descriptor

Note 1. Refer to Table 7.11.

Table 7.10 W99681CF Alternate Setting 1-16 Data-In Endpoint Descriptor

Offset	Field	Size Value		Description		
0	bLength	1 0x07		Size of this descriptor in bytes		
1	bDescriptorType	1	1 0x05 Endpoint Descriptor Type			
2	bEndpointAddress	1	0x81	Endpoint number. Direction is set to IN.		
3	bmAttributes	1	0x01 Isochronous transfer type			
4	wMaxPacketSize	2	Note 1	Maximum packet size of this alternate setting		
6	bInterval	1	0x01	Interval in milliseconds for polling endpoint for data transfers		

Note 1. Refer to Table 7.11.

Table 7.11 shows bAlternateSetting fields and wMaxPacketSize fields for these alternate settings.

Table 7.11 The Maximum Data Payload Size in Bytes for Alternate Settings

Alternate Setting	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
bAlternateSetting	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
wMaxPacketSize	1023	959	895	831	767	703	639	575	511	447	383	319	255	191	127	63

7.4.3.3 String Descriptors

The W99681CF includes strings describing the manufacturer and product as shown in Table 7.12.

Offset	Field	Size	Value	Description		
0	bLength	1	0x04	Length of String descriptor in bytes		
1	bDescriptorType	1	0x03	String Descriptor Type		
2	bString	2	0x0409	Array of two-byte LangID codes (English American)		
4	bLength	1	0x10 Length of String descriptor in bytes			
5	bDescriptorType	1	0x03	String Descriptor Type		
6	bString	14	WINBOND	Manufacturer		
20	bLength	1	0x10	Length of String descriptor in bytes		
21	bDescriptorType	1	0x03	String Descriptor Type		
22	bString	14	W99681C F	Product		

Table 7.12 W99681CF Default Stream Descriptors

7.5 Video/Still Image Data Transfer

Video or still image data from the device is delivered to the host system through an isochronous pipe (Endpoint 1). The maximum packet size can be varied for different alternate settings for limited USB bandwidth for other USB devices.

7.5.1 Output Video Data Format

The W99681CF supports two video transfer modes: original video transfer mode and JPEG compression video transfer mode. The captured video stored in the DRAM will be compressed by the JPEG encoder and then transferred to the host if JPEG compression video transfer mode is selected, or will be directly transferred to the host if original video transfer mode is selected. Four different formats are supported for the output video which are selected by bits 1-0 of the Video Capture Control register (CR26) and bits 1 of the JPEG Encoder Control register (CR39) as described in Table 7.13.

CR39_1	CR26_1-0	Output Video Data Format
0	00	Original YUV4:2:2 packed mode
0	01	Original YUV4:2:0 packed mode
1	0X	Reserved
1	10	JPEG YUV4:2:2 non-interleaved scan mode
1	11	JPEG YUV4:2:0 non-interleaved scan mode

Table 7.13 Output Video Data Format

7.5.2 Video Frame Synchronization

A single video frame typically requires multiple USB packets. One or more zero length isochronous data packets are used to mark the end of a video frame. The first non-zero data packet is the start of the next video frame.

If an error is encountered during the reception of a USB packet, the host may discard the entire video frame. Processing begins again with the next video frame as indicated by the first non-zero length isochronous data packet after one or more zero-length packet.

7.5.3 Bandwidth Management

The W99681CF provides for varying the bandwidth required by providing a zero-bandwidth interface (alternate setting zero) and 16 alternate settings interfaces with 8 Mbps down to 0.5 Mbps bandwidth in descending 0.5 Mbps steps. The default alternate setting zero (with zero bandwidth) selected by a Set Configuration request allows a video camera to be initially configured even on a highly utilized USB bus. Before the device begins streaming video data, the host software must select an alternate setting with the appropriate amount of bandwidth by using the Set Interface request.

7.6 Power Management

The W99681CF provides three output pins as described below for the video camera power management to meet the USB specification requirements.

- **PWRDWN/PWRDWN#**: These pins, when active, are used to turn off the USB 5V power supply to the video source circuits (CCD/CMOS sensor device, ADC, DSP, video decoder, etc.).
- **SUSPND**: This pin, when active, is used to turn off the 3.3V power supply to the W99681CF (excluding USBVDD pin, the power supply for the transceiver), DRAM, and E²PROM.

Bit 10 of the Miscellaneous Control register (CR00) determines whether the W99681CF-based device is a high power device or a low power device as described below:

- **CR00_10 = 1**: High power, bus-powered devices. They must draw no more than 100 mA upon power up and may draw up to 500 mA after being configured.
- **CR00_10 = 0**: Low power, bus-powered devices. May draw up to 100 mA from their upstream connection to allow the interface to function when the remainder of the hub is powered down.

7.6.1 W99681CF Reset

The W99681CF has two reset sources: system reset from the input RSTIN# pin, and the USB reset detected by seeing a single-ended zero (SE0) for more than 2.5 us. All reset sources are joined inside the W99681CF into a single reset signal which initializes the W99681CF and is also output via the RSTOUT pin to initialize other external circuits.

Reset can wake the W99681CF from the suspended mode (SUSPND is inactive low) and turn off the USB 5V power supply to the video source circuits (PWRDWN is active high and PWRDWN# is active low).

7.6.2 Before Configured

Before configured, the W99681CF should be reset and keep PWRDWN and PWRDWN# to be active $(CR00_4 = 0)$ such that the W99681CF-based devices will not draw more than 100 mA from the USB bus power supply. It is required that an external power-on reset should be applied to the RSTIN# pin before any USB transaction is sent to the W99681CF by the host.

7.6.3 After Configured

After configured, PWRDWN and PWRDWN# pins should be inactive by programming the Camera Power-on Control register to one (CR00_4 = 1) to enable device functions. The W99681CF-based devices must draw less than 100 mA (CR00_10 = 0) or 500 mA (CR00_10 = 1) from the bus during normal operation. The SOF (Start of Frame) packet is guaranteed to occur once a frame to keep full speed devices awake during normal bus operation.

7.6.4 Suspend

The W99681CF goes into the suspend mode from any powered state when it sees a constant idle state

on the USB bus lines for more than 3.0 ms. When suspended, both SUSPND and PWRDWN are active high, PWRDWN# is active low, and the Camera Power-on Control register is cleared to zero (CR00_4 = 0). The W99681CF-based devices must draw less than 500 uA from the bus when suspended.

7.6.5 Resume

Once the W99681CF is in the suspended state, it can be resumed by receiving non-idle signaling on the bus. SUSPND will be inactive low when resumed. PWRDWN and PWRDWN# will remain active until the Camera Power-on Control register is set to one (CR00_4 = 1) by the host.

7.7 Serial EEPROM Interface

The W99681CF supports an external 1K (128×8) serial E^2 PROM as an optional source for IHV-specific Vendor ID and Product ID. The external E^2 PROM data, in stead of the default data, will be used when a high is sampled at SDA pin (pin 49) during a reset operation.

7.7.1 EEPROM Data Structure

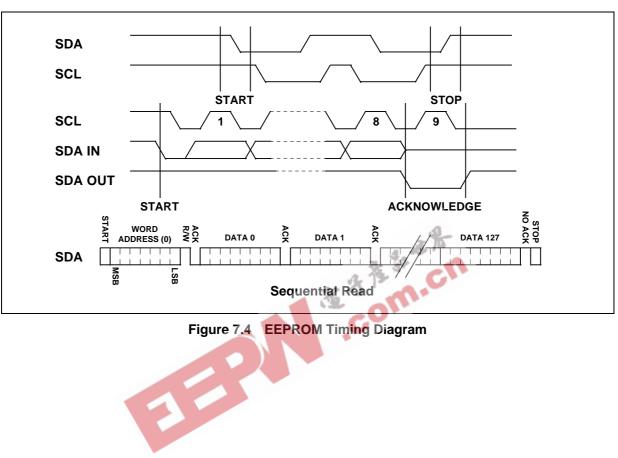
The E²PROM contains IHV-specific Vendor ID and Product ID as described in Table 7.14.

Address	Field	Size	Value	Description
0x00		2	TL	Total length of E ² PROM data to be returned
0x02	idVendor	2		Vendor ID
0x04	idProduct	2	3	Product ID

Table 7.14 EEPROM Data Structure

7.7.2 EEPROM Operations

The external E²PROM will be only read right after a reset operation. TL (defined in address 0x00) bytes of data will be read by using a sequential read operation.


START condition: A high-to-low transition of SDA with SCL high is a start condition which must proceed any other command.

STOP condition: A low-to-high transition of SDA with SCL high is a stop condition which terminates all communications. After a read sequence, the stop command will place the E²PROM in a standby power mode.

ACKNOWLEDGE: All addresses and data words are serially transmitted to and from the E²PROM in 8-bit words. The E²PROM will acknowledge by pulling SDA low after receiving each address. The W99681CF will likewise acknowledge by pulling SDA low after receiving each data word. This must happen during the ninth clock cycle after each word received and after all other devices have freed the SDA bus.

Refer to Figure 7.4, a sequential read is initiated by the W99681CF with a start condition followed by a 7-bit data word address (always 0) and a high read bit. The E²PROM will respond with an acknowledge and then serially output 8 data bits. After the W99681CF receives an 8-bit data word, it responds with an acknowledge. As long as the E²PROM receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. The sequential read operation is terminated when the memory address limit (TL) is reached and the W99681CF does not respond with an acknowledge but does generate a following stop condition.

7.8 Microcontroller Interface

The W99681CF supports an external 8-bit microcontroller to access DRAM and W99681CF internal registers for portable PC camera applications.

7.8.1 Base Address Setup

The W99681CF internal registers occupy 256-byte microcontroller address space. A special base address (BA) setup mechanism, described as followed, is designed for the microcontroller to configure base address for the W99681CF internal register access:

- 1 assert hardware reset.
- 2 write the key, "!" "!" "W" "9" "9" "6" "7" "!" in ASCII code, to the port xx00H.
- 3 the port address, xx00H, then will be used as Base Address (BA) for the microcontroller access.

4

The setup procedure must be executed right after the hardware reset. Once the procedure is finished, the xx00H address will be used as the base address until another hardware reset is asserted.

7.8.2 W99681CF Register Access

Since all internal registers are 16-bit wide, it takes two cycles for the microcontroller to access one 16bit register through the 8-bit data bus. The two microcontroller access cycles should be in low-byte then high-byte order. For example, to write CR00 register, the microcontroller must write to BA + 00H address at first, then write to BA + 01H address to complete this 16-bit register access.

7.8.3 Microcontroller Interrupt

The W99681CF interrupts the microcontroller by forcing INT# pin to low when it completes a still image capture (original video mode) or JPEG compression of this image (JPEG compression mode). Once interrupt is acknowledged by the microcontroller, it must write one to bit 5 of the Miscellaneous Control register (CR00_5) to clear the interrupt. Interrupt can also be disabled by writing zero to bit 6 of the Miscellaneous Control register (CR00_6).

7.8.4 DRAM Access

The external microcontroller can read/write access DRAM through W99681CF by using the following registers:

uC Access DRAM Start Address Register (BA + 18H \sim 1AH): specifies the 21-bit starting WORD address of the DRAM to be accessed.

uC Access DRAM Mode Select (bit 8 of BA + 1BH): specifies read or write access mode.

uC Access DRAM Data Port Register (BA + 1CH ~ 1DH): 16-bit data port which stores data read from DRAM in read mode, or data to be written into DRAM in write mode.

Read Access (uC reads data from DRAM)

- 1 DRAM Start Address Setup. Program the 21-bit WORD address to BA + 18H (bits 7-0), BA + 19H (bits 15-8), then BA + 1AH (bits 20-16).
- 2 Read Access Mode Setup. Program 0 to bit 0 of BA + 1BH to select read mode. W99681CF then starts accessing 16-bit DRAM data into the internal latches, and the internal DRAM address will be increased by 1 automatically after the access.
- 3 Read Low-Byte DRAM Data. Read low-byte DRAM data from BA + 1CH location.
- 4 Read High-Byte DRAM Data. Read high-byte DRAM data from BA + 1DH location. The W99681CF starts accessing the next-address DRAM data and the internal DRAM address will be increased by 1 automatically after the access.
- 5 Read Contiguous DRAM Data. Repeat steps 3 and 4 for contiguous DRAM data accesses.

Write Access (uC writes data to DRAM)

- 1 DRAM Start Address Setup. Program the 21-bit WORD address to BA + 18H (bits 7-0), BA + 19H (bits 15-8), then BA + 1AH (bits 20-16).
- 2 Write Access Mode Setup. Program 1 to bit 0 of BA + 1BH to select write mode.
- 3 Write Low-Byte DRAM Data. Write low-byte DRAM data into BA + 1CH location.
- 4 Write High-Byte DRAM Data. Write high-byte DRAM data into BA + 1DH location. The W99681CF then starts writing the 16-bit data into DRAM and the internal DRAM address will be increased by 1 automatically after the access.
- 5 Write Contiguous DRAM Data. Repeat steps 3 and 4 for contiguous DRAM data accesses.

7.8.5 IHV-Specific Information

The microcontroller can provide IHV-specific information including Vendor ID, Product ID, Device release number, and string descriptors of manufacturer, product, and device's serial number as that of E^2 PROM to save the cost of an E^2 PROM. Maximum 128 bytes information can be provided and data structure is the same as that of E^2 PROM shown in Table 7.14. All IHV-specific information must be written to the W99681CF via the Vendor String Data Port register (CR0F) in word-aligned sequence right after hardware reset and base address is set up.

8 CONTROL AND STATUS REGISTERS

The internal W99681CF control registers can be accessed by performing one of the two vendor-specific requests on the default pipe (Endpoint 0): Get W99681CF Control for read access and Set W99681CF Control for write access. All W99681CF control registers are 16-bit wide and can be accessed in WORD only. Table 8.1 shows the control register map.

Index	uC Address	Symbol	Description
0000H	BA + 00H - 01H	CR00	Miscellaneous Control Register
0001H	BA + 02H - 03H	CR01	Serial Bus Control Register
0002H	BA + 04H - 05H	CR02	General I/O Port Control Register
0003H	BA + 06H - 07H	CR03	DRAM Timing Control Register
0004H	BA + 08H - 09H	CR04	SDRAM Control Register
0005H	BA + 0AH - 0BH	CR05	Memory Controller Test Mode Control Register
0006H	BA + 0CH - 0DH	CR06	Fast Serial Bus Write Register 0
0007H	BA + 0EH - 0FH	CR07	Fast Serial Bus Write Register 1
0008H	BA + 10H - 11H	CR08	Fast Serial Bus Write Register 2
0009H	BA + 12H - 13H	CR09	Fast Serial Bus Write Register 3
000CH	BA + 18H - 19H	CR0C	uC Access DRAM Start Address Low Register
000DH	BA + 1AH - 1BH	CR0D	uC Access DRAM Start Address High Register
000EH	BA + 1CH - 1DH	CR0E	uC Access DRAM Data Port Register
000FH	BA + 1EH - 1FH	CR0F	Vendor String Register
0010H	BA + 20H - 21H	CR10	Cropping Window Start X Register
0011H	BA + 22H - 23H	CR11	Cropping Window Start Y Register
0012H	BA + 24H - 25H	CR12	Cropping Window End X Register
0013H	BA + 26H - 27H	CR13	Cropping Window End Y Register
0014H	BA + 28H - 29H	CR14	Captured Video Width Register
0015H	BA + 2AH - 2BH	CR15	Captured Video Height Register
0016H	BA + 2CH - 2DH	CR16	Video Capture Control Register
0017H	BA + 2EH - 2FH	CR17	Video Capture Test Mode Control Register
0018H	BA + 30H - 31H	CR18	Capture Test Data Register
0020H	BA + 40H - 41H	CR20	Capture Y Frame Buffer 0 Start Address Low Register
0021H	BA + 42H - 43H	CR21	Capture Y Frame Buffer 0 Start Address High Register

Table 8.1 W99681CF Control Register Map

0022H	BA + 44H - 45H	CR22	Capture Y Frame Buffer 1 Start Address Low Register
0023H	BA + 46H - 47H	CR23	Capture Y Frame Buffer 1 Start Address High Register
0024H	BA + 48H - 49H	CR24	Capture U Frame Buffer 0 Start Address Low Register
0025H	BA + 4AH - 4BH	CR25	Capture U Frame Buffer 0 Start Address High Register
0026H	BA + 4CH - 4DH	CR26	Capture U Frame Buffer 1 Start Address Low Register
0027H	BA + 4EH - 4FH	CR27	Capture U Frame Buffer 1 Start Address High Register
0028H	BA + 50H - 51H	CR28	Capture V Frame Buffer 0 Start Address Low Register
0029H	BA + 52H - 53H	CR29	Capture V Frame Buffer 0 Start Address High Register
002AH	BA + 54H - 55H	CR2A	Capture V Frame Buffer 1 Start Address Low Register
002BH	BA + 56H - 57H	CR2B	Capture V Frame Buffer 1 Start Address High Register
002CH	BA + 58H - 59H	CR2C	Capture Y Frame Buffer Stride Register
002DH	BA + 5AH - 5BH	CR2D	Capture UV Frame Buffer Stride Register
002EH	BA + 5CH - 5DH	CR2E	Video Capture Y FIFO Threshold Register
002FH	BA + 5EH - 5FH	CR2F	Video Capture UV FIFO Threshold Register
0030H	BA + 60H - 61H	CR30	Image Maximum Width Register
0031H	BA + 62H - 63H	CR31	Image Maximum Height Register
0032H	BA + 64H - 65H	CR32	Compressed Bitstream Buffer 0 Start Address Low Register
0033H	BA + 66H - 67H	CR33	Compressed Bitstream Buffer 0 Start Address High Register
0034H	BA + 68H - 69H	CR34	Compressed Bitstream Buffer 1 Start Address Low Register
0035H	BA + 6AH - 6BH	CR35	Compressed Bitstream Buffer 1 Start Address High Register
0036H	BA + 6CH - 6DH	CR36	Restart Interval Register
0037H	BA + 6EH - 6FH	CR37	VLE FIFO Threshold Register
0038H	BA + 70H - 71H	CR38	Vertical Up-scaling Control Register
0039H	BA + 72H - 73H	CR39	JPEG Encoder Control Register
003AH	BA + 74H - 75H	CR3A	JPEG Image Size Low Register
003BH	BA + 76H - 77H	CR3B	JPEG Image Size High Register
003CH	BA + 78H - 79H	CR3C	USB FIFO Enable and Threshold Register
003DH	BA + 7AH - 7BH	CR3D	USB Isochronous Transfer Size Low Register
003EH	BA + 7CH - 7DH	CR3E	USB Isochronous Transfer Size High Register
003FH	BA + 7EH - 7FH	CR3F	JPEG/MCTL Test Data Register
0040H-5FH	BA + 80H - BFH	CR40-5F	JPEG Luminance Quantization Table Registers
0060H-7FH	BA + C0H - FFH	CR60-7F	JPEG Chrominance Quantization Table Registers

8.1 General Control Registers

Miscellaneous Control Register (CR00)

Read/				ex: 000	00H		uC	C Addr	ess: 00	DH - 01	н				
Powe	r-on D	efault:	FFC	0H				1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FS	SUS	ISO	RCV	PLL	BP	Туре	MS	24M	INTE	INTC	PWR	R	JR	UR	MR
Bit 15	(orce S) = For = Nor	ce sus	pend n	node v								1)		
Bit 14	S	Suspen	d Mode	e Enab	le (It r	eflects	status	of the	MD6	oin upo	on rese	et)			
) = Disa										-)			
		= Ena													
Bit 13	le	sochror	nous H	andsh	ake Pl	nase S	upport	lt ref	ects st	atus o	f the M	ID5 pir	upon	reset)	
Dit 10) = Ena			circo i i		appon	. (ardo o			apon		
		= Disa													
Bit 12		Differen		V Sou	rce (lt	reflect	s statu	is of th	≏ MD4	nin ur	on res	et)			
DICTZ) = Ger				reneot	o olala			pinup					
		= Ger		•		transc	eiver								
Bit 11		LL Ena						3 pin u	oon re	set)					
2) = Disa						- P 4		,					
		= Ena													
Bit 10	F	ligh Po	wer De	evice (lt refle	cts stat	tus of t	the ME)2 pin ı	upon re	eset)				
) = Low									,				
		l = Higl	•												
Bit 9	C	RAM	Type (I	t reflec	ts stat	us of tl	he MD	1 pin u	ipon re	eset)					
) = ED(•••					•	•	,					
	1	= SDI	RAM												
Bit 8	C	RAM	Size (It	reflect	s statu	us of th	e MD0) pin u	pon re	set)					
) = 256	`					-							

Wir	actronics Corp.	
	$1 = 1M \times DRAM$	
Bit 7	CLK24M Output Enable 0 = Disable, CLK24M pin is forced to low 1 = Enable	
Bit 6	Interrupt Enable 0 = Disable, INT# is forced to inactive high 1 = Enable	
Bit 5	Interrupt Clear 0 = Normal operation 1 = Clear interrupt, INT# will be cleared to high if enabled.	
Bit 4	 1 = Clear interrupt, INT# will be cleared to high if enabled. Camera Power-on Control 0 = Power-down 1 = Power-on Note. This register will be cleared to zero when suspended. 	
Bit 3	Reserved	
Bit 2	JPEG Encoder Reset 0 = Normal operation 1 = Reset JPEG encoder	
Bit 1	USB FIFO Reset 0 = Normal operation 1 = Reset USB FIFO	
Bit 0	MD Bus Reset 0 = Normal operation 1 = Reset MD bus (tri-stated)	

Serial Bus Control Register (CR01)

Read	Write		Inde	ex: 00	01H		uC	C Addr	ess: 0	2H - 03	ЗH				
Powe	r-on De	efault:	000	ЮH											
15	14	13	12	12 11 10 9 8 7							4	3	2	1	0
	Reserved					MCU	XTR	Rese	erved	FSB	SDE	SDR	SCR	SDW	SCW

Bits 15-11 Reserved

	bond ctronics Corp.
Bit 10	External EEPROM Enable (Read-only, it reflects status of the SDA pin upon reset) 0 = Disable 1 = Enable
Bit 9	External Microcontroller Enable (Read-only, it reflects status of the EXTMCU pin) 0 = Disable 1 = Enable
Bit 8	USB Transceiver (It reflects status of the INTXTR pin upon reset) 0 = External transceiver 1 = Internal transceiver
Bits 7-6	Reserved
Bit 5	Reserved Fast Serial Bus Write Enable 0 = Disable, serial bus outputs (SDATA and SCLK) are controlled by CR01_1-0 1 = Enable, serial bus outputs (SDATA and SCLK) are controlled by CR06 - CR09. Once CR09 is programmed, all 32-bit data for SDATA and 32-bit data for SCLK from CR06 - CR09 will be serially output in 400 Khz bit frequency (2.5 us bit time).
Bit 4	Serial Data Enable/Serial Data Strobe 0 = SDE#/SDS pin is driven low 1 = SDE#/SDS pin is driven high
Bit 3	Serial Interface Data Read (Read only) 0 = SDATA is low 1 = SDATA is high
Bit 2	Serial Interface Clock Read (Read only) 0 = SCLK is low 1 = SCLK is high
Bit 1	Serial Interface Data Write 0 = SDATA pin is driven low 1 = SDATA pin is tri-stated
Bit 0	Serial Interface Clock Write 0 = SCLK pin is driven low 1 = SCLK pin is tri-state

General I/O Port Control Register (CR02)

Read/Write	
------------	--

Index: 0002H

uC Address: 04H - 05H

- 45 -

Power-on Default: 0000H

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
P7W	P6W	P5W	P4W	P3W	P2W	P1W	P0W	P7D	P6D	P5D	P4D	P3D	P2D	P1D	P0D

Bits 15-8 GPIO[7:0] Direction

0 = Input

1 = Output

Bits 7-0 GPIO[7:0] Data

0 = Low

1 = High

Note. GPIO[7:0] pins are used as A[15:8] to the external microcontroller if used (EXTMCU = 1). This register does not control on the GPIO[7:0] pins if an external microcontroller is used.

DRAM Timing Control Register (CR03)

Read/Write Index: 0003H uC Address: 06H - 07H															
Powe	r-on De	efault:	405	DH											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R Refresh Cycles DCT T				T	RP	RAS	T_F	RCD	-	T_RAS	5	RE	T_(CAS	

Bit 15 Reserved

Bits 14-12 Refresh Cycles

000 = 1 refresh cycle per horizontal scan line

001 = 2 refresh cycles per horizontal scan line

010 = 3 refresh cycles per horizontal scan line

011 = 4 refresh cycles per horizontal scan line

100 = 5 refresh cycles per horizontal scan line

101 = 6 refresh cycles per horizontal scan line

110 = 7 refresh cycles per horizontal scan line

111 = 8 refresh cycles per horizontal scan line

Bit 11 DCT DRAM Data Access

 $\mathbf{0}=\mathsf{DCT}\;\mathsf{DRAM}$ data access can be interrupted by MCTL when other DRAM request is active.

1 = DCT DRAM data access cannot be interrupted by MCTL.

Bits 10-9	RAS# Precharge Time Control 00 = 2 MCLKs 01 = 3 MCLKs
	10 = 4 MCLKs 11 = 5 MCLKs
Bit 8	RAS# Precharge Time Shrink0 = Not shrink1 = Shrink by 0.5 MCLK over that specified by bits 10-9 of this register
Bits 7-6	RAS# Low to CAS# Low Time Control 00 = 1 MCLK 01 = 2 MCLKs 10 = 3 MCLKs 11 = 4 MCLKs Refresh Cycle RAS# Low Pulse Width Control 000 ~ 111 = 1 ~ 8 MCLK cycles
Bits 5-3	Refresh Cycle RAS# Low Pulse Width Control 000 ~ 111 = 1 ~ 8 MCLK cycles
Bit 2	RAS# Low Extend 0 = Not extend 1 = Extend 1 MCLK
Bits 1-0	CAS# Low Stretch Control 00 = Not stretch 01 = Stretch approximately 1 ns 10 = Stretch approximately 2 ns

11 = Stretch approximately 3 ns

SDRAM Control Register (CR04)

Read/Write Index: 0004H							uC	C Addr	ess: 08	3H - 09	ЭH				
Power-on Default: 0030H															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			R	eserve	ed				Rea	nd Late	ency	ВТур	Bu	rst Len	igth

Bits 15-7 Reserved

Bits 6-4 Read Latency

- 000 = Reserved 001 = 1 clock 010 = 2 clocks 011 = 3 clocks $100 \sim 111 = \text{Reserved}$
- Bit 3 Burst Type
 - 0 = Sequential
 - 1 = Interleaved
- Bits 2-0 Burst Length

	t Length
Sequential (Bit 3 =0)	Interleaved (Bit 3 = 1)
1	3. Sal
2	2
4	4
8	8
Reserved	Reserved
Reserved	Reserved
Reserved	Reserved
Full Page	Reserved
	1 2 4 8 Reserved Reserved Reserved

Memory Controller Test Mode Control Register (CR05)

Read/	Read/WriteIndex: 0005HPower-on Default:0000H							C Addr	ess: 0/	4H - 0	ВH				
Powe	r-on De	efault:	0H												
15									6	5	4	3	2	1	0
	Reserved								HD	SR	Test	R		MTS	

- Bits 15-8 Reserved
- Bit 7 Memory Controller Test Mode Enable
 - 0 = Disable
 - 1 = Enable
- Bit 6 DRAM Controller Hold Control
 - 0 = Normal operation
 - 1 = Hold DRAM Controller operation
- Bit 5 SDRAM Self Refresh
 - 0 = Disable
 - 1 = Enable

- Bit 4 SDRAM Delay Test (used for test mode only)
- Bit 3 Reserved
- Bits 2-0 Memory Controller Test Mode Select

Fast Serial Bus Write Registers 0~3 (CR06~CR09)

Read/	Write		Inde	ex: 000	06H - C	009H	uC	C Addr	ess: 00	CH - 13	3H				
Powe	r-on De	efault:	000	OН											
CR06															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C7	D7	C6	D6	C5	D5	C4	D4	C3	D3	C2	D2	C1	D1	C0	D0
CR07									23	34	C				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C15	D15	C14	D14	C13	D13	C12	D12	C11	D11	C10	D10	C9	D9	C8	D8
CR08															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C23	D23	C22	D22	C21	D21	C 20	D20	C19	D19	C18	D18	C17	D17	C16	D16
CR09															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
C31	D31	C30	D30	C29	D29	C28	D28	C27	D27	C26	D26	C25	D25	C24	D24

D[31:0] 32-bit data for SDATA output. When fast serial bus is enabled (CR01_5 = 1), D[31:0] will be output serially from LSB to MSB once CR09 is programmed.

C[31:0] 32-bit data for SCLK output. When fast serial bus is enabled (CR01_5 = 1), C[31:0] will be output serially from LSB to MSB once CR09 is programmed.

uC Access DRAM Start Address Low Register (CR0C)

Read	Write		Inde	ex: 000	СН		uC	C Addr	ess: 18	3H - 19	θH				
Powe	ower-on Default: XXXXH														
15							8	7	6	5	4	3	2	1	0
							uCA[[15:0]							

Bits 15-0 uC Access DRAM Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for the external microcontroller access. This register contains 16 lower-order bits of the value. Bits 20-16 are located at CR0D_4-0.

uC Access DRAM Start Address High Register (CR0D)

Read/	Write		Inde	ex: 000	DH		uC	C Addr	ess: 1/	AH - 11	BH				
Power	r-on D	efault:	XXX	ΚХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		R	eserve	ed			R/W	R	eserve	ed		uC	CA[20:1	16]	
											2				
Bits 1	5-9 F	Reserve	ed						25	4.0	5 JA				
Bit 8	ι	IC Acce	ess DR	AM M	ode				37	. a.	C				
	() = Rea	ad mod	e. uC	reads	data fr	om DR	RAM.		10					
	·	1 = Writ	e mod	e. uC	writes	data to		м.	C						
Bits 7-	-5 F	Reserve IC Acce 0 = Rea 1 = Writ Reserve	ed												
Bits 4-	-0 ι	ICA[20:	16]												
uC Ac	cess	DRAM	Data	Port R	egiste	er (CR	0E)								
Read/	Write		Inde	ex: 000	DEH		uC	C Addr	ess: 10	CH - 1	DH				
Power	r-on D	efault:	XXX	ΚХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15-8 High Byte Data

Bits 7-0 Low Byte Data

Vendor String Data Port Register (CR0F)

High Byte Data

Write-	only		Inde	ex: 000	DFH		uC	C Addro	ess: 1E	EH - 11	=H				
Power	-on De	efault:	ХХХ	ΚХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Vende	or Strir	ng Data	a Port						

Low Byte Data

Bits 15-0 Vendor String Data Port

Maximum 128 bytes IHV-specific information can be provided by the microcontroller through this data port. This data port can be written by the microcontroller only and is prohibted from the USB interface accessing.

8.2 Video Input Control Registers

Cropping Window Start X Register (CR10)

Read/	Write		Inde	ex: 001	I0H		uC	C Addr	ess: 20)H - 21	н				
Power	r-on De	efault:	XXX	КХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved						Cropp	ing Wi	ndow S	Start X				
Bits 1	Bits 15-10 Reserved Bits 11-0 Cropping Window Start X A 12-bit value specifies the number of pixels between the inactive edge of HS and the first cropped video pixel														
Bits 1	Sits 11-0 Cropping Window Start X														
	A	12-bit	value	specif	ies the	e numb	per of p	oixels t	betwee	en the	inactiv	e edge	e of HS	S and t	he first
	C	roppec	l video	pixel.		. 1			C						
Cropp	oing W	'indow	Start	Y Reg	jister (CR11)									
Read/	Write		Inde	ex: 001	IIH		uC	C Addr	ess: 22	2H - 23	BH				
Power	r-on De	efault:	XXX	(XH											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	ed					Cro	opping	Windo	w Sta	τY			

Bits 15-11 Reserved

Bits 10-0 Cropping Window Start Y

An 11-bit value specifies the number of lines between the inactive edge of VS and the first cropped video data line.

Cropping Window End X Register (CR12)

Read/	Write		Inde	ex: 001	I2H		uC	C Addr	ess: 24	4H - 25	5H				
Power	r-on De	efault:	XXX	ΚХН											
15	14	13	12	11	10 9 8 7 6 5 4 3 2 1 0									0	
	Rese	erved						Cropp	ing Wi	ndow	End X				

Bits 15-12 Reserved

Bits 10-1 Cropping Window End X

A 12-bit value specifies the number of pixels between the inactive edge of HS and the last cropped video pixel.

Cropping Window End Y Register (CR13)

Read/	Write		Inde	ex: 00′	13H		uC	C Addr	ess: 26	6H - 27	7Η				
Powe	r-on De	efault:	XXX	ххн											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	ed					Cr	opping	Wind	ow End	Υb			
Bits 15-11 Reserved Bits 10-0 Cropping Window End Y An 11-bit value specifies the number of lines between the inactive edge of VS and th cropped video data line.										he last					
Read/	\∕/rit⊖		Inde	ex: 00	ан		ш	Ω Addr	ess: 28	RH - 20	ы				
	r-on De	efault:		XXH	1 - 1 1		u		000. 20		// /				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15-11 Reserved

Bits 10-0 Captured Video Width

Reserved

An 11-bit value specifies the width in pixel of the captured video which is down-scaled (or not) from the cropped video. $CR14 \leq CR12 - CR10$. Down-scaling is automatically done by an internal DDA (Digital Differential Accumulator).

Captured Video Width

Captured Video Height Register (CR15)

Read/Write	Index: 0015H	uC Address: 2AH - 2BH
Power-on Default:	XXXXH	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	ed					С	apture	d Vide	o Heig	ht			

Bits 15-11 Reserved

Bits 10-0 Captured Video Height

An 11-bit value specifies the height in line of the captured video which is down-scaled (or not) from the cropped video. $CR15 \le CR13 - CR11$. Down-scaling is automatically done by an internal DDA (Digital Differential Accumulator).

Video	Capture C	ontrol	Regist	er (CR	16)					3					
									4.8	T IN					
Read/			ex: 001	16H		uC	C Addr	ess: 20	CH - 21	DH					
Power	-on Default	000	OH			_	S.	2.	~			1			
15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
VCE	CAPCTL	VSP	HSP	VIM	VI Fo	ormat	DBE	DBS	CLM	CKF	FTE	FTM	VC F	ormat	
Bit 15	Video (Capture	Enabl	e											
	0 = Dis	0 = Disable													
	1 = En	1 = Enable													
Bits 14	4-13 Video (
	s 14-13 Video Capture Control 00 = Capture all received fields/frames video data														
		apture							o data						
		apture	•								aced m	ode)			
		eserve					,					,			
Bit 12	VS Inp	ut Pin F	Polarity												
Dit 12		gative s													
		sitive s													
Bit 11	HS Inp		•												
DILTI	•	gative s													
		sitive s													
D 14 4 0			•	130											
Bit 10	Input V														
		bit moo	-												
	1 = 8-t	oit mode	9												
Bits 9-	8 Input V	ideo Da	ata For	mat											

|--|

		YUV Input Vid	deo Data Format
	Bits 9-8	8-bit Mode (Y[7:0])	16-bit Mode (UV[7:0])
	00	Y, U, Y, V,	U, V, U, V,
	01	U, Y, V, Y,	U, V, U, V,
	10	Y, V, Y, U,	V, U, V, U,
	11	V, Y, U, Y,	V, U, V, U,
Bit 7	Double Buffering Ena	able	
	0 = Disable		
	1 = Enable		
Bit 6	Double Buffering Sta	tus (Read-only)	
	0 = Buffer 0 active		.0
	1 = Buffer 1 active		A JE TO
Bit 5	Video Data Clamping	Enable (Clamped to CCIR-601 F	Format)
	0 = Disable	× 3	
		nped to 16 – 235, UV is clamped	d to $16 - 240$)
Bit 4	VICLK Falling Edge I		
		and signals are latched by rising	•
	1 = Input video data	and signals are latched by falling	edge of VICLK
Bit 3	Filter Enable		
	0 = Disable		
	1 = Enable		
Bit 2	Filter Type		
DICZ	0 = 1-2-1 filter		
	1 = 2-3-6-3-2 filter		
Bits 1-0	Captured Video Data	Format	
	00 = YUV4:2:2 packe	ed mode	
	01 = YUV4:2:0 packe		
	10 = YUV4:2:2 plana		
	11 = YUV4:2:0 plana	ii mode	

Video Capture Test Mode Control Register (CR17)

Read/Write	Index: 0017H	uC Address: 2EH - 2FH
Power-on Default:	0000H	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		TEN	Rese	erved	١	/ideo ٦	Fest Se	election	า						

- Bits 15-8 Reserved
- Bit 7 Video Capture Test Mode Enable
 - 0 = Normal operation
 - 1 = Test mode enable
- Bits 6-5 Reserved
- Video Capture Test Mode Selection Bits 4-0

Capture Test Data Register (CR18)

Bits 4-0	/ideo Ca	apture	Test N	lode	Select	ion					A.				
Capture Te	Capture Test Data Register (CR18)														
Read/Write Power-on D	Read/Write Index: 0018H uC Address: 30H - 31H Power-on Default: XXXXH														
15 14	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
	Capture Test Data														

Bits 15-0 Capture Test Data (used for test mode only)

Capture Y Frame Buffer 0 Start Address Low Register (CR20)

Read/	Write		Inde	ex: 002	20H		uC	C Addr	ess: 40	DH - 41	IH				
Powe	r-on De	efault:	XXX	ХХН											
15	15 14 13 12 11 10						8	7	6	5	4	3	2	1	0
							APYS	A0[15:	0]						

Bits 15-0 Capture Y Frame Buffer 0 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for buffer 0 (packed mode), or Y components (planar mode) of the captured video. Buffer 0 is always used, no matter double buffering is enabled or disabled. This register contains 16 lowerorder bits of the value. Bits 20-16 are located at CR17_4-0.

Capture Y Frame Buffer 0 Start Address High Register (CR21)

Read/	Write		Inde	ex: 002	21H		uC	C Addr	ess: 42	2H - 43	вН					
Powe	ower-on Default: XXXXH															
15	14	13	12	11	10	9	8	7	6	5	4	4 3 2 1 0				
	Reserved											CAP	/SA0[2	20:16]		

Bits 15-5 Reserved

Bits 4-0 CAPYSA0[20:16]

Capture Y Frame Buffer 1 Start Address Low Register (CR22)

Read/Write Index: 0022H uC Address: 44H - 45H Power-on Default: XXXXH 15 14 13 12 11 10 9 8 7 6 5 4 3 2 4													
Powe	r-on De	efault:	XXX	ХН				3	E ar C				
15	14	13	12	11	10	9	8	7 6	5 4	3	2	1	0
						C	APYSA	1[15:0]					
-						10 million							

Bits 15-0 Capture Y Frame Buffer 1 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for buffer 1 (packed mode), or Y components (planar mode) of the captured video. Buffer 1 is not used if double buffering is disabled. This register contains 16 lower-order bits of the value. Bits 20-16 are located at CR19_4-0.

Capture Y Frame Buffer 1 Start Address High Register (CR23)

Read/	Read/WriteIndex: 0023HPower-on Default:XXXXH						uC	C Addr	ess: 46	6H - 47	γH				
Powe	r-on De	efault:	XXX	ХХН											
15	14	13	12	11	10	9	9 8 7 6 5 4 3 2 1						0		
				R	eserve	ed					CAPYSA1[20:16]				

Bits 15-5 Reserved

Bits 4-0 CAPYSA1[20:16]

Capture U Frame Buffer 0 Start Address Low Register (CR24)

Read/Write

Index: 0024H

uC Address: 48H - 49H

Power-on Default: XXXXH

		Jiadin	700	0.01											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						С	APUS	A0[15:	0]						

Bits 15-0 Capture U Frame Buffer 0 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for U components (planar mode) of the captured video. It is not used if the captured video is in packed mode. Buffer 0 is always used, no matter double buffering is enabled or disabled. This register contains 16 lower-order bits of the value. Bits 20-16 are located at CR1B_4-0.

Capture U Frame	Buffer 0 Start	Address High	n Register (CR25)	- 8-				
Read/Write Power-on Default:	Index: 0025 XXXXH	Н	uC Address: 4AH	- 4BH	0			
15 14 13	12 11	10 9 8	3 7 6 5	5 4	3	2	1	0
	Res	served			CAPL	JSA0[2	20:16]	
Bits 15-5 Reserv Bits 4-0 CAPUS	ed SA0[20:16]							
Capture U Frame	Buffer 1 Start	Address Low	Register (CR26)					
Read/Write	Index: 0026	н	uC Address: 4CH	- 4DH				

itteau/															
Powe	r-on De	efault:	XXX	ΧН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						С	APUS	A1[15:	0]						

Bits 15-0 Capture U Frame Buffer 1 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for U components (planar mode) of the captured video. It is not used if the captured video is in packed mode. Buffer 1 is not used if double buffering is disabled. This register contains 16 lower-order bits of the value. Bits 20-16 are located at CR1D_4-0.

Capture U Frame Buffer 1 Start Address High Register (CR27)

Read/Write Index: 0027H uC Address: 4EH - 4FH

Power-on Default: XXXXH

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				R	eserve	ed						CAPL	JSA1[2	20:16]	

Bits 15-5 Reserved

Bits 4-0 CAPUSA1[20:16]

Capture V Frame Buffer 0 Start Address Low Register (CR28)

Read/	Write		Inde	ex: 002	28H		uC	C Addr	ess: 50H - 5	1Hg			
Power	r-on De	efault:	XXX	ΚХН					- 4at	g n			
15	14	13	12	11	10	9	8	7	6 5	4 3	2	1	0
						С	APVS	A0[15:	0]				
						-			CO				

Bits 15-0 Capture V Frame Buffer 0 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for V components (planar mode) of the captured video. It is not used if the captured video is in packed mode. Buffer 0 is always used, no matter double buffering is enabled or disabled. This register contains 16 lower-order bits of the value. Bits 20-16 are located at CR1F_4-0.

Capture V Frame Buffer 0 Start Address High Register (CR29)

Read/	Write		Inde	ex: 002	29H		uC	C Addr	ess: 52	2H - 53	ВН				
Powe	r-on De	efault:	XXX	ΧН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				R	eserve	ed						CAP\	/SA0[2	20:16]	

Bits 15-5 Reserved

Bits 4-0 CAPVSA0[20:16]

Capture V Frame Buffer 1 Start Address Low Register (CR2A)

Read/Write	Index: 002AH	uC Address: 54H - 55H
Power-on Default:	XXXXH	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						С	APVS	A1[15:0	0]						

Bits 15-0 Capture V Frame Buffer 1 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for V components (planar mode) of the captured video. It is not used if the captured video is in packed mode. Buffer 1 is not used if double buffering is disabled. This register contains 16 lower-order bits of the value. Bits 20-16 are located at CR21_4-0.

-43

Capture V Frame Buffer 1 Start Address High Register (CR2B)

Read/V Power-	Vrite on Defa	ult:	Index: 00 XXXXH	2BH		uC	Address:	56H - 57	7H				
15	14 1	13	12 11	10	9	8	7 6	5	4	3	2	1	0
Reserved CAPVSA1[20:16]													
Reserved CAPVSA1[20:16] Bits 15-5 Reserved Bits 4-0 CAPVSA1[20:16]													
Captur	e Y Fra	me B	uffer Stric	le Regi	ster (C	CR2C)							
Read/V	Vrite	14.	Index: 00	2CH		uC	Address:	58H - 59	ЭH				

Power	r-on De	erault:	XX	ХХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	ed						CA	PYS[1	0:0]				

Bits 15-11 Reserved

Bits 10-0 Capture Y Frame Buffer Stride

This register specifies the WORD offset of vertically adjacent pixels (packed mode), or vertically adjacent Y components of the captured video. It is used for both buffer 0 and buffer 1.

Capture UV Frame Buffer Stride Register (CR2D)

Read/Write

Index: 002DH

uC Address: 5AH - 5BH

Power-on Default: XXXXH

-																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							CAPY	′S[9:0]				

Bits 15-10 Reserved

Bits 9-0 Capture UV Frame Buffer Stride

This register specifies the WORD offset of vertically adjacent U or V components of the captured video which is in planar mode. It is used for both buffer 0 and buffer 1. It is not used if the captured video is in packed mode.

Video Capture Y FIFO Threshold Register (CR2E)		1 1	5. I
	36	5	

Read/	Write		Inde	ex: 002	2EH		uC	C Ado	dre	ess: 50	CH - 51	DH				
Powe	r-on De	efault:	080	0804H												
15	14	13	12	11	10	9	8	7		6	5	4	3	2	1	0
R	eserve	ed		VCA	PY_H	T[4:0]			Re	eserve	ed		VCA	PY_LT	[4:0]	

Bits 15-13 Reserved

Bits 12-8 Video Capture Y FIFO High Threshold

When video capture FIFO (packed mode), or Y FIFO (planar mode) is filled to this threshold, a request is generated to the DRAM controller for DRAM access. Initial value is 08H.

- Bits 7-5 Reserved
- Bits 4-0 Video Capture Y FIFO Low Threshold

When video capture FIFO (packed mode), or Y FIFO (planar mode) is fetched to this threshold by DRAM controller, the FIFO is ready to release DRAM access to other pending requests. Initial value is 04H.

Video Capture UV FIFO Threshold Register (CR2F)

	Read/	Write		Inde	ex: 002	2FH		uC	C Addr	ess: 5l	EH - 5I	FH				
	Power	-on De	efault:	848	4H											
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	V	CAPU	HT[3:	0]	V	CAPU	LT[3:	0]	V	CAPV	HT[3:	0]	V	CAPV	LT[3:	0]

Bits 15-12 Video Capture U FIFO High Threshold

When video capture U FIFO (planar mode) is filled to this threshold, a request is generated to the DRAM controller for DRAM access. It is not used if the captured video is in packed mode. Initial value is 08H.

Bits 11-8 Video Capture U FIFO Low Threshold

When video capture U FIFO (planar mode) is fetched to this threshold by DRAM controller, the FIFO is ready to release DRAM access to other pending requests. It is not used if the captured video is in packed mode. Initial value is 04H.

Bits 7-4 Video Capture V FIFO High Threshold

> When video capture V FIFO (planar mode) is filled to this threshold, a request is generated to the DRAM controller for DRAM access. It is not used if the captured video is in packed 30 × 8 mode. Initial value is 08H.

Bits 3-0 Video Capture V FIFO Low Threshold

When video capture V FIFO (planar mode) is fetched to this threshold by DRAM controller, the FIFO is ready to release DRAM access to other pending requests. It is not used if the captured video is in packed mode. Initial value is 04H.

8.3 JPEG Encoder Control Registers

Image Maximum Width Register (CR30)

Read/	Write		Inde	ex: 003	30H		uC	C Addr	ess: 6(DH - 61	Н				
Powe	r-on De	efault:	ХХХ	ΚХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	ed						MA	XW[10	0:0]				
Bits 1		nage N	ed Iaximu Height			R31)		3E	方言	an a	.C.Y				
Read/				ex: 003	31H		uC	C Addr	ess: 62	2H - 63	BH				
-	r-on De		XXX	(XH						-				-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R	eserve	d						MA	XH[10):0]				

Bits 15-11 Reserved

Bits 10-0 Image Maximum Height

Compressed Bitstream Buffer 0 Start Address Low Register (CR32)

Read/	d/Write Index: 0032H ver-on Default: XXXXH						uC	C Addr	ess: 64	4H - 65	5H				
Powe	r-on De	efault:	XXX	ΧН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							BSSA	0[15:0]							

Bits 15-0 Compressed Bitstream Buffer 0 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for the compressed bitstream buffer 0. Bits 20-16 are located at CR33_4-0.

Compressed Bitstream Buffer 0 Start Address High Register (CR33)

Read/	Read/Write Index: 0033H Power-on Default: XXXXH						uC	C Addro	ess: 66	6H - 67	ΥH				
Power	-on De	efault:	ХХХ	КХН											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				R			BSS	SA0[20	:16]						

Bits 15-5 Reserved

Bits 4-0 BSSA0[20:16]

Comp	oresse	d Bitst	tream	Buffer	[.] 1 Sta	rt Ad	dres	s Lo	ow R	egiste	r (CR3	4)				
Read/ Power		efault:		ex: 003 XXH	34H			uC	Add	ress: 68	8H - 6 9	ЭН				
15	14	13	12	11	10	9	8	3	7	6	5	4	3	2	1	0
							BS	SA1	[15:0]						

Bits 15-0 Compressed Bitstream Buffer 1 Start Address Low

A 21-bit value specifies the WORD offset from the start of the frame buffer for the compressed bitstream buffer 1. Bits 20-16 are located at CR35_4-0.

Compressed Bitstream Buffer 1 Start Address High Register (CR35)

Read/	Write		Inde	ex: 003	35H		uC	C Addr	ess: 6/	4H - 6I	ЗH				
Power-on Default: XXXXH															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				R	eserve	ed						BSS	SA1[20	:16]	

Bits 15-5 Reserved

Bits 4-0 BSSA1[20:16]

Read/Write Index: 0036H uC Address: 6CH - 6DH

Power-on Default: 0000H

1 01101		Jiadin	000	011											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						R	Restart	Interv	al						

Bits 15-0 Restart Interval

Specifies the number of MCU (Minimum Coded Unit) in the restart interval. Restart interval processing is disabled if this value is 0.

VLE FIFO Threshold Register (CR37)

Read/Write	Ind	ex: 003	37H		uC	C Address: 6EH - 6FH				
Power-on Default:	080	4H				32 312 ·				
15 14 13	12	11	10	9	8	7 6 5 4	3	2	1	0
Reserved			VLE_H	HT[3:0]		Reserved		VLE_	LT[3:0]	
Bits 15-12 Reserved	d									

Bits 15-12 Reserved

Bits 11-8 VLE FIFO High Threshold

When VLE FIFO is filled with JPEG coded bitstream to this threshold, a request is generated to the DRAM controller for DRAM access. Initial value is 08H.

- Bits 7-4 Reserved
- Bits 3-0 VLE FIFO Low Threshold

When VLE FIFO is fetched to this threshold by DRAM controller, the FIFO is ready to release DRAM access to other pending requests. Initial value is 04H.

Vertical Up-scaling Control Register (CR38)

Read/	Write		Inde	ex: 003	38H		uC	C Addr	ess: 70	DH - 71	IH				
Powe	r-on De	efault:	000	ЮH											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EN				R	eserve	ed					Vertica	al Up-s	caling	Factor	

Bit 15 Vertical Up-scaling Enable

0 = Disable

1 = Enable

Bits 14-6 Reserved

Bits 5-0 Vertical Up-scaling Factor

Up-scaling ratio (Scaled Height/Original Height) = 1.x, where x = Vertical Up-scaling Factor/64. The maximum $2 \times$ up-scaling will be done if 0 is programmed.

JPEG Encoder Control Register (CR39)

Read/ Power		e Default:	Inde 000	ex: 003 0H	9H		uC	C Addro	ess: 72	2H - 73	3H					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		R	eserve	d			QRD	R	eserve	ed	JCLK	Test	TEN	JEN	R	
Bits 15 Bit 8			uantiza	ation T	able F	Registe	ers (CR		大 ^常 R7F)		Enable					
		JPEG Quantization Table Registers (CR40 ~ CR7F) Read Enable 0 = Disable 1 = Enable Reserved														
Bits 7-	-5	1 = Enable Reserved														
Bit 4		1 = Enable														
Bit 3		JPEG T	est (us	ed for	test m	ode or	ıly)									
Bit 2		JPEG T 0 = Disa 1 = Ena	able	de Ena	able											
Bit 1		JPEG E 0 = Disa 1 = Ena	able	r Enab	le											
Bit 0		Reserve	d													

JPEG Image Size Low Register (CR3A)

Read-	-only		Inde	ex: 003	BAH		uC	C Addr	ess: 74	4H - 75	5H				
Power-on Default: XXXXH															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

JIMG_SIZE[15:0]

Bits 15-0 JPEG Image Size Low

A 21-bit value specifies the JPEG compressed image size in WORD. It is used by the microcontroller to determine starting address for the next still image. This register contains the 16 lower-order bits of the value. Bits 20-16 are located at CR3B_4-0.

JPEG Image Size High Register (CR3B)

Read-	only		Inde	ex: 003	3BH		uC	C Addr	ess: 76H - 77	Ή			
Powe	r-on De	efault:	XXX	ΚХН					3	St.			
15	14	13	12	11	10	9	8	7	6 5	4 3	2	1	0
				R	eserve	ed		90	372	JIMG_SIZ	ZE _SI	ZE[20:	16]
								12	-On.				
Bits 1	5-5 R	eserve	ed			-							

- Bits 15-5 Reserved
- Bits 4-0 JPEG Image Size High This register contains the 4 high-order bits of the JPEG Image Size.

USB FIFO Enable and Threshold Register (CR3C)

Read/	Write		Inde	ex: 003	BCH		uC	C Addr	ess: 78	3H - 79	θH				
Power	r-on De	efault:	0A0)5H											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
UEN						HT[3:0]			Rese	erved			USB_I	_T[3:0]	

- Bit 15 USB Isochronous Pipe Transfer Enable
 - 0 = Disable
 - 1 = Enable
- Bits 14-12 Reserved
- Bits 11-8 USB FIFO High Threshold
- Bits 7-4 Reserved
- Bits 3-0 USB FIFO Low Threshold

USB Isochronous Transfer Size Low Register (CR3D)

Read/	Read/Write Index: 003DH					uC Address: 7AH - 7BH							
Power-on Default: XXXXH													
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1						0						
	ISO_SIZE[15:0]												

Bits 15-0 USB Isochronous Transfer Size Low

A 21-bit value specifies the USB Isochronous Transfer Size in WORD for the original video transfer or the still image transfer. It is not used for the JPEG compression video transfer mode (CR39_1 = 1). This register contains the 16 lower-order bits of the value. Bits 20-16

	are located at CR3E_4-0.										
USB Isochrono	SB Isochronous Transfer Size High Register (CR3E)										
	CON										
Read/Write	Index: 003EH uC Address:	7CH - 7DH									
Power-on Defau	lt: XXXXH										
15 14 13	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
	Reserved		ISO_	SIZE[2	20:16]						
		5 4	-	_	1 20:16]	0					

Bits 15-5 Reserved

Bits 4-0 USB Isochronous Transfer Size High

> This register contains the 4 high-order bits of the USB Isochronous Transfer Size. It is not used for the JPEG compression video transfer mode (CR39_1 = 1).

JPEG/MCTL Test Data Register (CR3F)

Read/	Read/Write Index: 003FH uC Address: 7EH - 7FH								
Powe	Power-on Default: XXXXH								
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0								
	JPEG/MCTL Test Data								

Bits 15-0 JPEG/MCTL Test Data (used for test mode only)

JPEG Luminance Quantization Table Registers (CR40 -- CR5F)

Read/	Read/Write Index: 0040H - 005FH				05FH	uC	C Addr	ess: 80	DH - BI	FH			
Power-on Default: XXXXH													
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (0						
	JPEG Luminance Quantization Table												

Bits 15-0 JPEG Luminance Quantization Table

Note. These registers can be read only when CR39 bit 8 is enabled (CR39_8 = 1).

JPEG Chrominance Quantization Table Registers (CR60 -- CR7F)

Read/Write Index: 0060H - 007FH uC Address: C0H - FFH										
Power	Power-on Default: XXXXH									
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
JPEG Chrominance Quantization Table										

Bits 15-0 JPEG Chrominance Quantization Table

Note. These registers can be read only when CR39 bit 8 is enabled (CR39_8 = 1).

ELECTRICAL CHARACTERISTICS 9

9.1 Absolute Maximum Ratings

Table 9.1 Absolute Maximum Ratings

Ambient temperature	0° C to 70° C								
Storage temperature	-40° C to 125° C								
DC supply voltage	-0.5V to 7V	_							
I/O pin voltage with respect to VSS	-0.5V to VDD +	0.5V							
9.2 DC Characteristics									
9.2.1 USB Transceiver DC Characteristics									
Table 9.2 USB Transceiver DC Characteristics	Table 9.2 USB Transceiver DC Characteristics								
Symbol Parameter	Conditions	Min	Max	Unit					

9.2 DC Characteristics

9.2.1 USB Transceiver DC Characteristics

Table 9.2 USB Transceiver DC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
V _{DI}	Differential Input Sensitivity	DP – DM	0.2		V
V _{CM}	Differential Common Mode Range	Includes V _{DI} range	0.8	2.5	V
V_{SE}	Single Ended Receiver Threshold		0.8	2.0	V
V _{OL}	Static Output Low Voltage	RL of 1.5 K Ω to 3.6 V		0.3	V
V _{OH}	Static Output High Voltage	RL of 15 K Ω to VSS	2.8	3.6	V
V _{CRS}	Output Signal Crossover Voltage		1.3	2.0	V
Z _{DRV}	Driver Output Resistance	Steady state drive	28	43	Ω
C _{IN}	Pin Capacitance			20	pF

9.2.2 Digital DC Characteristics

Table 9.3 Digital DC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
VDD5V	5V Power Supply		4.40	5.25	V
VDD	3.3V Power Supply		3.0	3.6	V
V _{IL}	Input Low Voltage		-0.5	0.8	V
V _{IH}	Input High Voltage		2.0		V
V _{OL}	Output Low Voltage			VSS+0.4	V
V _{OH}	Output High Voltage		2.4		V

I⊫	Input Low Leakage Current	$V_{IN} = 0.4V$		+70	μA
I _{IH}	Input High Leakage Current	$V_{IN} = 2.4V$		-70	μA
I _{UP}	Pull-up Current	$V_{IN} = 0V$	-133.2	-400.6	μA
C _{IO}	Pin Capacitance			10	pF
I _{PD}	Powerdown Current USB Suspend			200	μΑ
I _{DD}	Active Current	F _{CLK} = 12 MHz		120	mA

9.3 AC Characteristics

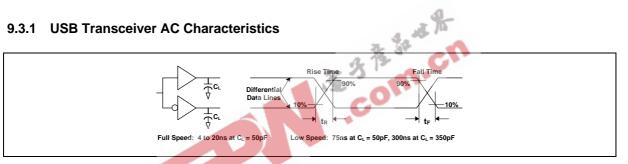


Figure 9.1 Data Signal Rise and Fall Time

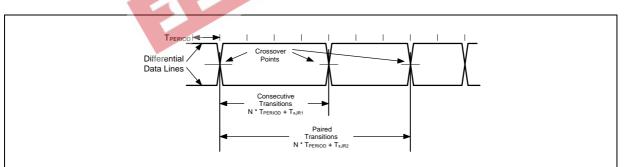


Figure 9.2 Differential Data Jitter

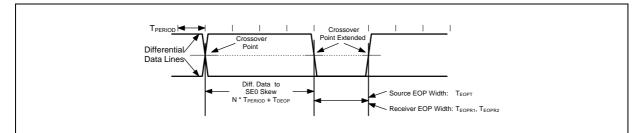
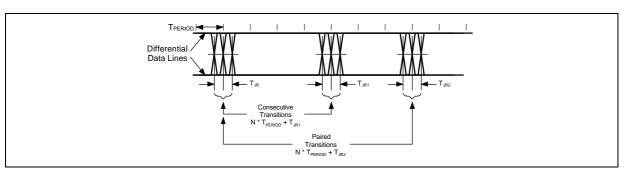
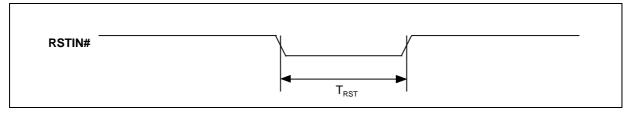



Figure 9.3 Differential to EOP Transition Skew and EOP Width

Table 9.4 USE	Transceiver	AC Characteristics
---------------	-------------	--------------------

Symbol	Parameter	Conditions	Min.	Max.	Unit
T _R	Rise Time	CL = 50 pF	4	20	ns
T _F	Fall Time	CL = 50 pF	4	20	ns
T _{RFM}	Rise/Fall Time Matching	A St OT	90	110	%
T _{drate}	Full Speed Data Rate	Average bit rate (12 Mb/s ± 0.25%)	11.97	12.03	Mbps
	Source Differential Driver Jitter				
T _{DJ1}	To Next Transition		-3.5	3.5	ns
T _{DJ2}	For Paired Transitions		-4.0	4.0	ns
T _{EOPT}	Source EOP Width		160	175	ns
T _{DEOP}	Differential to EOP Transition Skew		-2	5	ns
	Receiver Data Jitter Tolerance				
T _{JR1}	To Next Transition		-18.5	18.5	ns
T _{JR2}	For Paired Transitions		-9	9	ns
	EOP Width at Receiver				
T _{EOPR1}	Must Reject as EOP		40		ns
T _{EOPR2}	Must Accept as EOP		82		ns

9.3.2 RESET Timing AC Characteristics



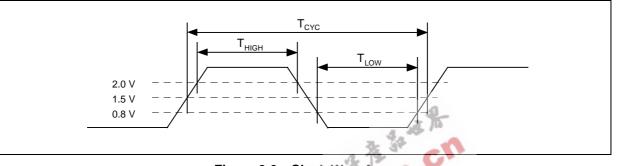

Figure 9.5 RESET Timing

Table 9.5 RESET Timing

Symbol	Parameter	Conditions	Min.	Max.	Unit
T _{RST}	Reset Pulse Width		100		ns

9.3.3 Clock AC Characteristics

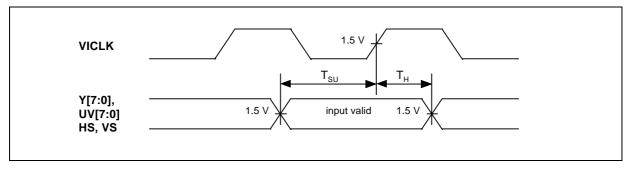


Table 9.6 Clock AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
1/T _{CYC}	Oscillator Frequency		11.988	12.012	MHz
	VICLK Frequency		5	30	MHz
	SMCLK Frequency		47.88	48.12	MHz
T _{HIGH}	Oscillator Clock High Time		33	50	ns
	VICLK Clock High Time		5		ns
	SMCLK Clock High Time		8.3	12.5	ns
T _{LOW}	Oscillator Clock Low Time		33	50	ns
	VICLK Clock Low Time		5		ns
	SMCLK Clock Low Time		8.3	12.5	ns

9.3.4 Input Video AC Characteristics

Table 9.7 Input Video AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
Τ _{su}	Y[7:0], UV[7:0], HS, VS Setup Time		6		ns
Т _н	Y[7:0], UV[7:0], HS, VS Hold Time		4		ns

9.3.5 DRAM Interface AC Characteristics

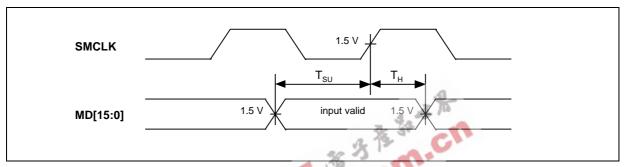
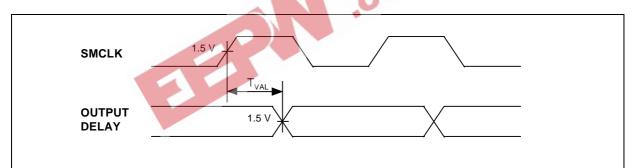



Figure 9.8 DRAM Interface Input Timing

Figure 9.9 DRAM Interface Output Timing

Table 9.8 DRAM Interface AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
Τ _{SU}	MD[15:0] Setup Time		0		ns
Т _н	MD[15:0] Hold Time		7		ns
Τ _Η	MD[15:0], MA[10:0], BA, RAS[1:0]#/CS[1:0]#, CAS[1:0]#/DQM[1:0], OE#/CKE, WE#, SRAS#, SCAS#		2	7	ns

9.3.6 EEPROM Interface AC Characteristics

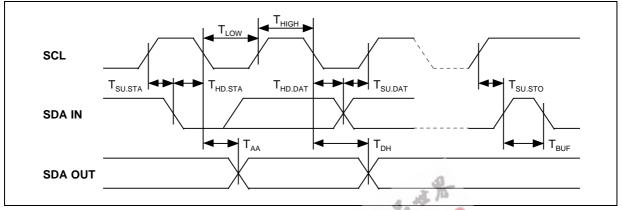


Figure 9.10 EEPROM Interface Timing

Table 9.9 EEPROM Interface AC Characteristics

Table 9.9 EEPROM Interface AC Characteristics					
Symbol	Parameter	Conditions	Min.	Max.	Unit
F _{SCL}	SCL Clock Frequency			100	KHz
T _{LOW}	Clock Pulse Width Low		4.7		μs
T _{HIGH}	Clock Pulse Width High		4.0		μs
T _{AA}	Clock Low to Data Out Valid		0.1	4.5	μs
T _{BUF}	Time the bus must be free before a new transmission can start		4.7		μs
T _{HD.STA}	Start Hold Time		4.0		μs
T _{SU.STA}	Start Set-up Time		4.7		μs
T _{HD.DAT}	Data In Hold Time		0		μs
T _{SU.DAT}	Data In Set-up Time		200		ns
T _R	Inputs Rise Time			1.0	μs
T _F	Inputs Fall Time			300	ns
T _{SU.STO}	Stop Set-up Time		4.7		μs
T _{DH}	Data Out Hold Time		100		ns

9.3.7 Microcontroller Interface AC Characteristics

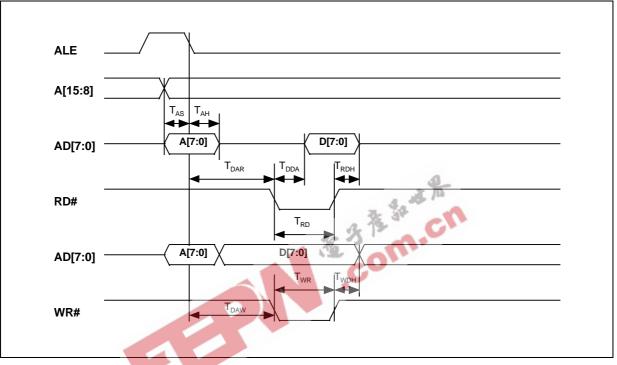


Figure 9.11 Microcontroller Interface Timing

Table 9.10 Microcontroller Interface AC Characteristics

Symbol	Parameter	Conditions	Min.	Max.	Unit
T _{AS}	Address Set-up Time		5		ns
T _{AH}	Address Hold Time		5		ns
T _{DAR}	ALE Low to RD# Low		10		ns
T _{DDA}	RD# Low to Data Valid			Т _{мськ} + 5	ns
T _{RDH}	Read Data Hold Time		3		ns
T _{RD}	RD# Pulse Width		2 T _{MCLK}		ns
T _{DAW}	ALE Low to WR# Low		10		ns
T _{WDH}	Write Data Hold Time		5		ns
T _{WR}	WR# Pulse Width		2 T _{MCLK}		ns

10 PACKAGE SPEC.

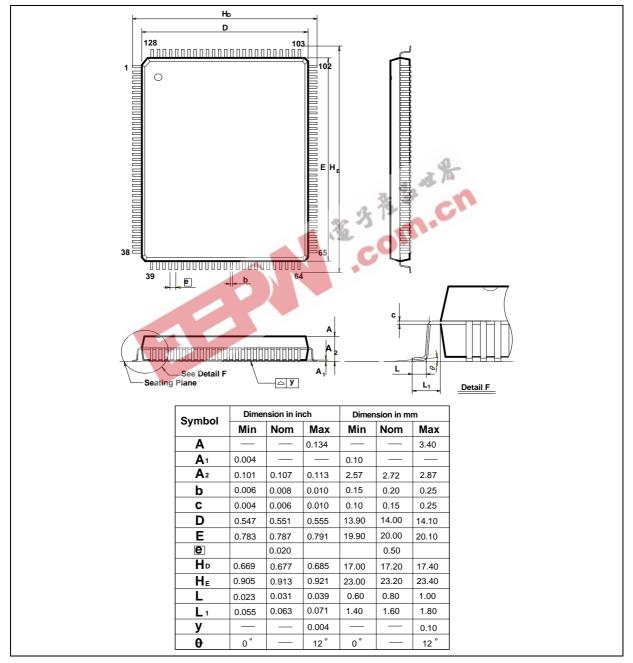


Figure 10.1 128L QFP (14x20x2.75mm footprint 3.2mm) Dimensions

11 **ORDERING INFORMATION**

Part Number	Package
W99681CF	128L QFP

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792647 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-7197006

Taipei Office 11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505 FAX: 886-2-7197502

Winbond Electronics North America Corp. Winbond Microelectronics Corp. Winbond Systems Lab. 2730 Orchard Parkway, San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-9436668

Note: All data and specifications are subject to change without notice.