Energy Management Modular Power Quality Analyzer Type WM23-96

- · Phases asymmetry control
- Optional RS 232 serial port
- Optional RS 422/485 serial port

- Accuracy ±0.5 F.S. (current/voltage)
- Three-phase modular power analyzer
- Backlighted LCD 4x3 1/2 DGT Display
- Front size: 96x96 mm
- Measurements of phase and system variables: W, W_{dmd}, var, VA, VA_{dmd}, PF, V_{L-N}, V_{L-L}, A, An, Hz, THD-A, THD-V
- TRMS measurement of distorted waves (voltages/currents)
- Measurement of MAX values: W L1, W L2, W L3, W∑, W_{dmd} (AL1-AL2-AL3 max on request)
- Measurement of MIN values: PF L1, PF L2, PF L3, PF ∑
- Harmonic analysis (FFT) up to the 16th harmonic (current and voltage)
- Instantaneous variables read-out: 4x3 1/2 digit
- Up to 2 optional relay or open collector outputs
- 1 optional analogue output
- MODBUS, JBUS Protocol
- Protection degree (front): IP 65
- Universal power supply: 18-60VAC/VDC, 90-260 VAC/VDC

Product Description

µP-based three-phase modular power quality analyzer with built-in programming key-pad.

Particularly recommended for

a detailed analysis of the electrical variables and of the power quality. Housing for panel mounting and IP65 (front) protection degree.

Ordering Key WM23-96AV53H XX XX XX XX X Model Range Code System **Power Supply** Slot A Slot B Slot C

Type selection

Range code

208VLL/5(6)AAC AV4: -20% ≤ Un ≤+20%

AV5: 400VLL/5(6)AAC -20% ≤ Un ≤+15%

100VLL/5(6)AAC AV6: -20% ≤ Un ≤+15% 660VLL/5(6)AAC

-30% ≤ Un ≤+15% 50-60 Hz for all input mod-

ules. Module not removable.

System

3: Three-phase, unbalanced load, with or without neutral

Power supply

A: 24 VAC -15 +10% 50-60Hz

B: 48 VAC -15 +10% 50-60Hz

C: 115VAC -15 +10% 50-60Hz

D: 230 VAC -15 +10% 50-60Hz

18 to 60VAC/VDC L: H: 90 to 260VAC/VDC

Slot A (signal retransmission)

XX: None A1:

Single analogue output, 20mADC

A2: Single analogue output, ±5mADC Single analogue output,

A3: ±10mADC

Single analogue output, ±20mADC A4:

B1: Dual analogue output, 20mADC

B2: Dual analogue output, ±5mADC

B3: Dual analogue output, ±10mADC

B4: Dual analogue output, ±20mADC

V1: Single analogue output, 10VDC

V2: Single analogue output, ±1VDC V3: Single analogue output,

±5VDC V4: Single analogue output,

±10VDC W1: Dual analogue output,

W2: Dual analogue output, ±1VDC

W3: Dual analogue output, ±5VDC

W4: Dual analogue output, ±10VDC

Slot B (communication)

Slot D **Options**

None Serial port, RS485 multidrop, bidirectional

NOTE: max. digital output (alarms and/or pulses): 2, any exceeding output is redundant.

NOTE: the second analogue output is intended as redundant type only.

NOTE: with the A, B, C, D types power supply, only an open collector module or a single relay output module can be used. The instrument can be fully equipped only with L and H type power supply.

Slot C (redundant output or digital inputs)

XX: None

Single relay output (AC1-8AAC, 250VAC) R1: **R2**: Dual relay output (AC1-8AAC, 250VAC) 01: Single open collector

output (30V/100mADC) 02: Dual open collector output (30V/100mADC)

3 digital inputs D2: 3 diğital inputs + aux output

Slot D (alarm output)

XX: None

Single relay output, (AC1-8AAC, 250VAC)

Dual relay output, (AC1-8AAC, 250VAC) R2: 01: Single open collector

output (30V/100mADC) 02:

Dual open collector output (30V/100mADC)

Options

None

X: S: A: RS232 serial port

displaying and recording of AL1-AL2-AL3 max instead of WL1-WL2-WL3 max.

Y: Options: S+A above.

Input Specifications

Number of analogue inputs Current	3	Active power (@ 25° C $\pm 5^{\circ}$ C, R.H. $\leq 60\%$)	±(1% Pn +2DGT)
Voltage	4	Reactive Power	±(1/0111+2DQ1)
Digital Inputs	On request	(@ 25°C ± 5°C, R.H. ≤ 60%)	±(2% Pn +2DGT)
AQ1038	Number of inputs: 3 (voltage free)	Apparent power (@ 25°C ± 5°C, R.H. ≤ 60%) Harmonic distortion	±(1% Pn +2DGT)
Use	,		±3% F.S. (up to 16 th harmonic) (F.S.: 100%)
	Inputs 2 and 3: W-VA dmd	Additional errors	0.00/ 50 / 0.00/ 1.000/ 1.15
.	measurements synchronization	Humidity	≤0.3% F.S. from 60% to 90% H.R.
Reading voltage	24VDC/1mA	Temperature drift	≤200ppm/°C
AQ1042 Input frequency	inputs power supply	Display	Back-lighted LCD 4x3 ¹ / ₂ digit 70 x 38mm
Output voltage	16V<+Aux<24VDC	Display refresh time	700ms
Output current Open contact resistance Insulation	Max 15mA Min 100k Ω 4000VRMS	Measurements	Current, voltage, power, power factor, frequency, harmonic distortion. TRMS measurement of a distorted wave.
Accuracy (display, RS232, RS485)	In=5A; Pn= In* Un	Coupling type	Direct
Current Phase-neutral voltage Phase-phase voltage Frequency	Un: F.S. range AV4-5-6-7 ±(0.5% In +2DGT) ±(0.5% Un +2DGT) ±(1% Un +2DGT) ±0.1Hz	Input impedance 208VLL 5(6)AAC (AV4): 400VLL 5(6)AAC (AV5): 100VLL 5(6)AAC (AV6): 660VLL 5(6)AAC (AV7):	>200 kΩ >900 kΩ >200 kΩ >900 kΩ

Output Specifications

Analogue Outputs	(on request)	Insulation	By means of optocouplers,
Number of outputs	Up to 1 (+1 redundant)		4000 V _{RMS} output to
Accuracy	±0.2% f.s.		measuring input
	(@ 25°C ±5°C, R.H. ≤60%)		4000 V _{RMS} output to
Range	0 to 20 mADC,		supply input
	0 to ±20 mADC	RS422/RS485	(on request)
	0 to ±10 mADC,		Multidrop
	0 to ±5 mADC		bidirectional (static and
	0 to 10 VDC, 0 to ±10 VDC		dynamic variables)
	0 to ±5 VDC	Connections	2 or 4 wires, max. distance
	0 to ±3 VDC 0 to ±1 VDC		1200m, termination directly
Scaling factor:	Programmable within the	A 1.1	on the instrument
Coaing factor.	whole range of retransmis-	Addresses	255, selectable by key-pad
	sion: it allows the retrans-	Protocol	MODBUS/JBUS (RTU)
	mission management of all	Data (bidirectional) Dynamic (reading only)	System and phase variables:
	values from: 0 and 20 mADC,	Dynamic (reading only)	see table "display pages"
Variables	See relevant list	Static (writing only)	All the configuration parameters,
Response time	≤ 900 ms typical	Static (Witting Grily)	activation of the static output.
·	(filter excluded, FFT excluded)	Data format	1 start bit, 8 data bit,
Ripple	<1%	Data format	no parity, 1 stop bit
	acc. to IEC 60688-1, EN 60688-1	Baud-rate	9600 bauds
Total temperature drift	≤ 500 ppm/°C (input+out-	Insulation	By means of optocouplers,
put)	≤ 300 ppi ii/ O (iiiput+out-		4000 V _{RMS} output to
Load: 20 mADC	< 600 Ω		measuring input
±20 mADC	≤ 550 Ω		4000 V _{RMS} output to
±10 mADC	≤ 1100 Ω		supply input
± 5 mADC	≤ 2200 Ω	RS232	(on request)
10 VDC	≥ 10 kΩ		bidirectional (static and
±10 VDC	≥ 10 kΩ		dynamic variables)
± 5 VDC	≥ 10 kΩ	Connections	3 wires, max. distance 15m,
± 1 VDC	≥ 10 kΩ	Data format	1 start bit, 8 data bit

Output Specifications (cont.)

Baud-rate Protocol other data Digital outputs	no parity, 1 stop bit 9600 bauds MODBUS/JBUS (RTU) as per RS422/485 (on request) To be used as alarms or remote control.	Output type Min. response time	Relay, SPDT type AC 1-8A @ 250VAC DC 12-5A @ 24VDC AC 15-2.5A @ 250VAC DC 13-2.5A @ 24VDC ≤ 150 ms, filter excluded, FFT excluded, setpoint
Alarm outputs Number of outputs Alarm type Variables to be controlled Set-point adjustment Hysteresis On-time delay Relay status	(on request) up to 2, independent Up alarm, down alarm see the "List of the variables that can be connected" from 0 to 100% of the electrical scale from 0 to 100% of the electrical scale 0 to 255s Selectable, normally de-energized and normally energized	Insulation	on-time delay: "0 s" By means of optocouplers, 4000 V _{RMS} output to measuring input, 4000 V _{RMS} output to supply input. The outputs can be either relay type or open collector type (V _{ON} 1.2VDC/Max. 100mA, V _{OFF} 30VDC Max.). Insulation like relay outputs.

· 如果

Software Functions

Password 1st level 2nd level	Numeric code of max 4 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 1000, all data are protected.	.com.	Page 5: PF L1(min), PF L2 (min), PF L3 (min) Page 6: W L1, W L2, W L3 Page 7: W L1 (max), W L2 (max),
Transformer ratio	CT from 1 to 5000 VT from 1.0 to 1999, where CT x VT ≤ 10000		W L3 (max) Page 7: "A" option: AL1 (max)
Power demand (dmd) Integration time	Programmable from 1 to 30 min		AL2 (max) AL3 (max) Page 8: var L1, var L2, var L3
Filter Filter operating range Filtering coefficient Filter action	From 0 to 100% of the input electrical scale 1 to 16 Measurements, alarms, serial port (fundamental variables: V, A, W and their derived ones).		Page 9: VA L1, VA L2, VA L3 Page 10: AL1 (alarm 1) Page 11: AL2 (alarm 2) Page 12: W Σ , PF Σ , var Σ , Hz Page 13: W Σ , PF Σ , VA Σ , Hz Page 14: W Σ (max), PF Σ (min) Page 15: W dmd, VA dmd, r.t.
Page Variables Three-phase system with neutral	Up to 4 by page Page 1: V L1, V L2, V L3, V LN Σ Page 2: V L12, V L13, V L31, V Σ Page 3: A L1, A L2, AL3, An Page 4: PF L1, PF L2, PF L3, PF Σ		Page 16: W dmd (max), VA dmd (max) Page 17: THD VL1, THD VL2, THD VL3 Page 17: THD AL1, THD AL2, THD AL3

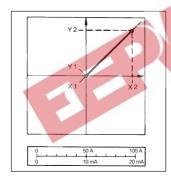
Supply Specifications

AC voltage	90 to 260 VDC/VAC 18 to 60VDC/VAC		115VAC -15+10% 50-60Hz 230 VAC -15+10% 50-60Hz
	24 VAC -15+10% 50-60Hz 48 VAC -15+10% 50-60Hz	Power consumption	≤ 30VA/12W (90 to 260V) ≤ 20VA/12W (18 to 60V)

General Specifications

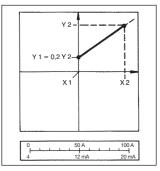
Operating temperature	0 to +50°C (32 to 122°F) (R.H. < 90% non condensing)	Immunity
Storage temperature	-10 to +60°C (14 to 140°F) (R.H. < 90% non condensing)	Other standards
Installation category	Cat. III (IEC 60664)	Safety
Pollution degree	2	Product
Key-pad lock	by means of a rotary switch placed behind the display or by means of a contact (in case of presence of the digital inputs module)	Approvals Connections 5(6)A Housing Dimensions
Insulation	4000 V _{RMS} between all inputs/outputs to ground	Material
Dielectric strength	4000 V _{RMS} for 1 minute	Protection degree
EMC Emissions	EN 61000-6-3 (class A) residential, commercial and	Weight

Immunity	light industry environment EN 61000-6-2 (class A) industrial environment
Other standards	
Safety	IEC 61010-1, EN 61010-1
Product	IEC 60688-1, EN 60688-1
Approvals	CE, UL, CSA
Connections 5(6)A	Screw-type, max 2.5 mm ² wires (2 x 1.5 mm ²)
Housing	
Dimensions	96x96x140 mm
Material	ABS, NORYL, PC (front) self-extinguishing: UL 94 V-0
Protection degree	Front: IP65, NEMA4x, NEMA12 Connections: IP20
Weight	Approx. 400 g (packing incl.)

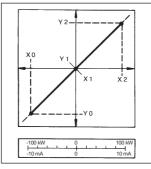

Function Description

Input/analogue output scaling capability

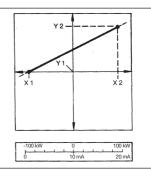
Working of the analogue output (Y) versus the input variable (X) - (input/output scaling capability)


Figure A

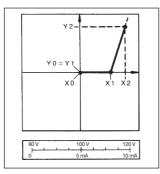
The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.


Figure D

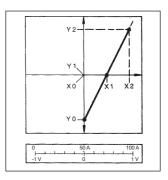
The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity has the value Y1 = 0.2 (live zero output).


Figure B

The sign of measured quantity and output quantity changes simultaneously. The output quantity is proportional to the measured quantity.

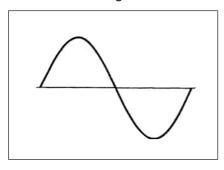

Figure E

The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from the value X1 to the value X2 of the measured quantity.


Figure C

The sign of measured quantity and output quantity remains the same. From X0 to X1, the output variable is 0. The range X1...X2 is delineated on the entire output range.

Figure F


The sign of the measured quantity remains the same, that of the output quantity changes as the measured quantity leaves range X0...X1 and passes to range X1...X2.

Mode of operation

Waveform of the signals that can be measured

 $\begin{tabular}{lll} Figure G \\ Sinewave, undistorted \\ Fundamental content & 100\% \\ Harmonic content & 0\% \\ A_{rms} = & 1.1107 \mid \overline{A} \mid \end{tabular}$

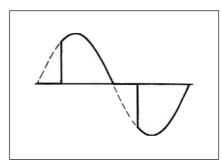
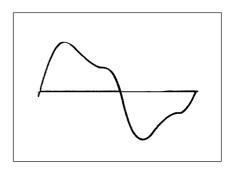



Figure H
Sinewave, indented
Fundamental content 10...100%
Harmonic content 0...90%
Frequency spectrum: 3rd to 16th harmonic

Sinewave, distorted
Fundamental content 70...90%
Harmonic content 10...30%
Frequency spectrum: 3rd to 16th harmonic

Figure I

Harmonic Analysis

Analysis principle	FFT	Display pages	THD %
Harmonic measurement Current Voltage	Up to 16th harmonic Up to 16th harmonic	Others	The harmonic distortion can be measured in both 3-wire or 4-wire systems.
Type of harmonics	THD (VL1) THD (VL2) THD (VL3) THD (AL1) THD (AL2) THD (AL3)		

Display pages

Variables that can be displayed in case of a three-phase system, 4-wire connection.

No	1st variable	2nd variable	3rd variable	4th variable	Notes
1	V L1	V L2	V L3	V LN Σ	Σ = system
2	V L1-2	V L2-3	V L3-1	VΣ	Σ = system
3	A L1	A L2	A L3	An	An= neutral current
4	PF L1	PF L2	PF L3	PF Σ	Σ = system
5	PF L1 (min)	PF L2 (min)	PF L3 (min)		
6	W L1	W L2	W L3		
7	W L1 (max)	W L2 (max)	W L3 (max)		With "A" option: AL1-AL2-AL3 max
8	var L1	var L2	var L3		
9	VA L1	VA L2	VA L3		
10	AL 1				variable connected to alarm 1
11	AL 2				variable connected to alarm 2
12	WΣ	PF Σ	var Σ	Hz	Σ = system
13	WΣ	PF Σ	VA Σ	Hz	Σ = system
14	W Σ (max)	PF Σ (min)			Σ = system
15	W dmd	VA dmd	r.t.		r.t.= symbol of communication Rx/Tx on the serial port
16	W dmd (max)	VA dmd (max)			
17	THD V L1	THD V L2	THD V L3		total harmonic distortion
18	THD A L1	THD A L2	THD A L3		total harmonic distortion

Used Calculation Formula

Phase Variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$$

Instantaneous active power

$$W_1 = \frac{1}{n} \cdot \sum_1^n (V_{1N})_i \cdot (A_1)_i$$

Instantaneous power factor

$$cos\phi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

$$A_1 = \sqrt{\frac{1}{D} \cdot \sum_{i=1}^{D} (A_1)_i^2}$$

 $A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_i)_i^2}$ Instantaneous apparent power

$$VA_1 = V_{1N} \cdot A_1$$

Instantaneous reactive power

$$VAr_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Three-phase active power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Three-phase apparent power Three-phase reactive power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2}$$

Three-phase power factor
$$\cos \phi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$$
(TPF)

Total harmonic distortion

$$THD_{i} = \frac{\sqrt{\sum_{n,n \neq 1}^{2}}}{T_{1:i}}$$

Equivalent three-phase voltage

$$V_{\Sigma} = \frac{V_{12} + V_{23} + V_{31}}{3}$$

$$VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$$

Neutral current

(TPF) An=
$$\overline{A}_{L1}+\overline{A}_{L2}+\overline{A}_{L3}$$

Where:

i = considered phase (L1, L2 or L3)

T = considered variable (V or A) n = harmonic order

List of the variables that can be connected to:

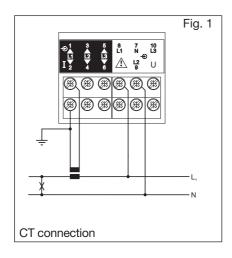
- Alarm outputs
- Analogue outputs

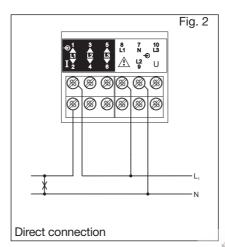
N°	Variable	3-phase + neutral	3-phase no neutral	Note
1	$V_{L-N}\Sigma$	Х	Х	Σ = system
2	$V_{L-L}\Sigma$	Х	Х	Σ = system
3	WΣ	Х	Х	Σ = system
4	varΣ	Х	Х	Σ = system
5	VAΣ	Х	Х	Σ = system
5 6 7	$PF\Sigma$	Х	Х	Σ = system
	THD V (1)	Х	Х	if FFT is activated
8 9	THD A (1)	Х	Х	if FFT is activated
9	An	Х	Х	
10	VA dmd	Х	Х	
11	W dmd	Х	Х	
12	ASY	Х	х	asymmetry

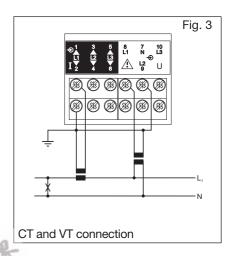
- (1) The highest value among the three phases
- (2) The RS232 communication port works as alternative of the RS485 module.

The possible module combinations

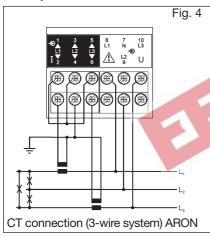
Danie unit	Clo+ A	Clat D	Clat C	Clot D
Basic unit	SIOL A	SIOL D	Slot C	SIOL D
Single analogue output	•			
Dual analogue output	•			
RS485 port		•		
Single relay output			•	
Single open collector output			•	
Dual relay output			•	•
Dual open collector output			•	•
3 digital inputs			•	
3 digital inputs + AUX			•	
Basic unit	Slot E			
RS232 port				

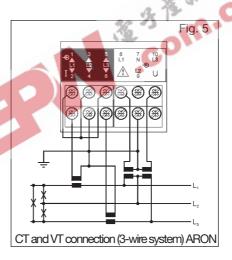

The available modules

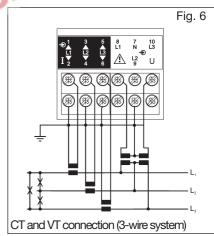

Туре	N. of	Ordering
	channels	Code
WM23-96 400V L-L 5A (base)		AH2300
WM23-96 208V L-L 5A (base)		AH2301
WM23-96 100V L-L 5A (base)		AH2302
WM23-96 660V L-L 5A (base)		AH2303
WM23-96 400V L-L 5A (base)	"A" opt.	AH2300A
WM23-96 208V L-L 5A (base)	"A" opt.	AH2301A
WM23-96 100V L-L 5A (base)	"A" opt.	AH2302A
WM23-96 660V L-L 5A (base)	"A" opt.	AH2303A
24VAC power supply		AP1025
48VAC power supply		AP1024
115VAC power supply		AP1023
230VAC power supply		AP1022
18-60VAC/DC power supply		AP1021
90-260VAC/DC power supply		AP1020
20mADC analogue output	1	AO1050
10VDC analogue output	1	AO1051
±5mADC analogue output	1	AO1052
±10mADC analogue output	1	AO1053
±20mADC analogue output	1	AO1054
±1VDC analogue output	1	AO1055
±5VDC analogue output	1	AO1056
±10VDC analogue output	1	AO1057
20mADC analogue output	2	AO1026
10VDC analogue output	2	AO1027
±5mADC analogue output	2	AO1028
±10mADC analogue output	2	AO1029
±20mADC analogue output	2	AO1030
±1VDC analogue output	2	AO1031
±5VDC analogue output	2	AO1032
±10VDC analogue output	2	AO1033
Relay output	1	AO1058
Relay output	2	AO1035
Open collector output	1	AO1059
Open collector output	2	AO1036
Digital inputs	3	AQ1038
Digital inputs + AUX	3	AQ1042
RS485 serial port (2)	1	AR1034
RS232 serial port (2)	1	AR1039
ations are subject to change without not	: \\\\\\	060000

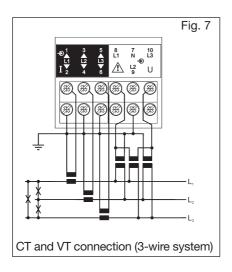


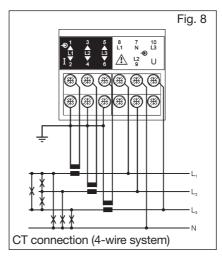
Wiring Diagrams

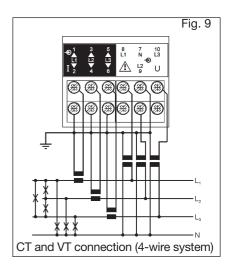

Single phase

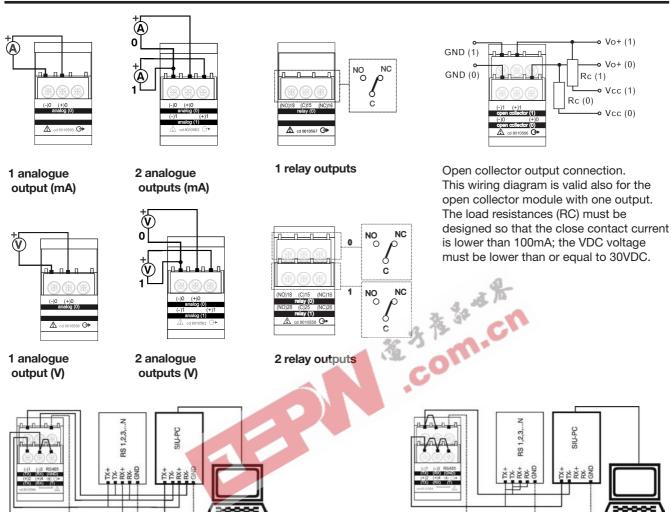


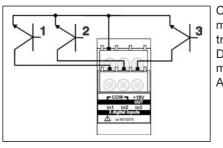




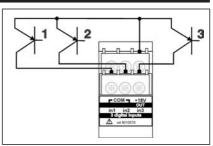

Three-phase - Unbalanced load



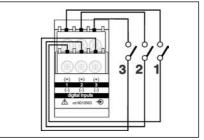




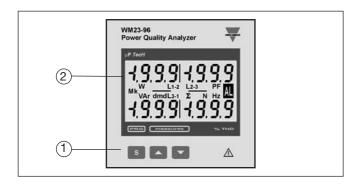
Wiring diagrams (optional modules)



Wiring diagrams: digital input modules


4-wire connection of RS485 serial port

Connection by means of NPN transistors. Digital input module: AQ1042. Connection by means of PNP transistors. Digital input module: AQ1042.


2-wire connection of RS485 serial port

Connection by means of contacts. Digital input module: AQ1042. Connection by means of contacts. Digital input module: AQ1038.

Front Panel Description

1. Key-pad

The programming of configuration parameters and the display are easily controlled by means of the 3 push buttons:

- "S" to enter into the programming $\,$ phase and to confirm the password $\,$

and

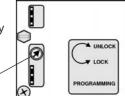
- for value programming
- for function selections
- for page scrolling

2. Display

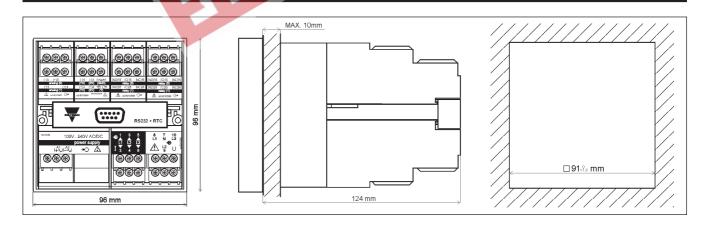
Instantaneous measurements:

- 4x3 1/2 digit (maximum read-out 1999)

Alphanumeric indications by means of LCD display for:

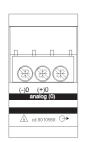

- Displaying the configuration parameters
- Displaying all the measured variables.

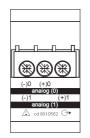
3. Programming lock


It's possible to lock the programming key-pad by means of a rotary switch located behind the instrument into the power supply slot.

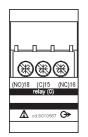
Turn counterclockwise the switch to lock the proramming key-pad.

3


Dimensions


Terminal boards

Single analogue output modules


AO1050 (20mADC) AO1051 (10VDC) AO1052 (±5mADC) AO1053 (±10mADC) AO1054 (±20mADC) AO1055 (±1VDC) AO1056 (±5VDC) AO1057 (±10VDC)

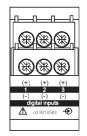
Dual analogue output modules

AO1026 (20mADC) AO1027 (10VDC) (±5mADC) AO1028 (±10mADC) AO1029 AO1030 (±20mADC) AO1031 (±1VDC) AO1032 (±5VDC) AO1033 (±10VDC)

Digital output modules

AO1058 Single relay output

AO1035 Dual relay output


AO1036 Dual open collector output

Other input/output modules

••••

RS232 communication port

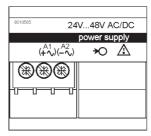
RS232 + RTC

AQ1038 3 digital inputs

AR1039

AQ1042 3 digital inputs + aux

AR1034 RS422/485 communication port


(TX) (RX) (T)

Power supply modules

AO1059

output

Single open collector

AP1021 18-60 VAC/DC power supply AP1020 90-260 VAC/DC power supply AP1025 24VAC power supply AP1024 48VAC power supply **AP1023** 115VCA power supply AP1022

230VCA power supply