WJA1505 5V Active-Bias InGaP HBT Gain Block

Product Features

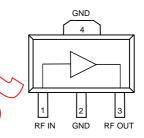
- 50 1000 MHz
- 19.5 dB Gain
- +19 dBm P1dB
- +35 dBm OIP3
- +5V Single Voltage Supply
- Internal Active Bias Supply
- Internally matched to 50Ω
- Lead-free / RoHS-compliant / Green SOT-89 package

Applications

- IF Amplifier
- Repeaters, BTS Transceivers

Target Specifications

- VHF/UHF
- Wireless Infrastructure
- General Purpose


Product Description

The WJA1505 is a high performance amplifier that offers high linearity in a low-cost surface-mount package. At 200 MHz, the WJA1505 typically provides 19.5 dB gain, +35 dBm OIP3, and +19 dBm P1dB. The device is housed in a lead-free/green/RoHS-compliant SOT-89 industry-standard SMT package using a NiPdAu plating to eliminate the possibility of tin whiskering.

The WJA1505 consists of Darlington pair amplifiers using a high reliability InGaP/GaAs HBT process techpology The MMIC amplifier is internally matched to 50Ω and only requires DC-blocking capacitors and an inductive RF ehoke for operation. Biased directly from a 5V supply, an internal active bias network enables stable operation over temperature, eliminating the need for the typical dropping bias resistor.

The amplifier is targeted for high performance IF applications in existing and next generation wireless technologies. In addition, the WJA1505 will work for various other applications within the 50 to 1000 MHz frequency range

Functional Diagram

Function	Pin No.
Input	1
Output/Bias	3
Ground	2, 4

Target Performance

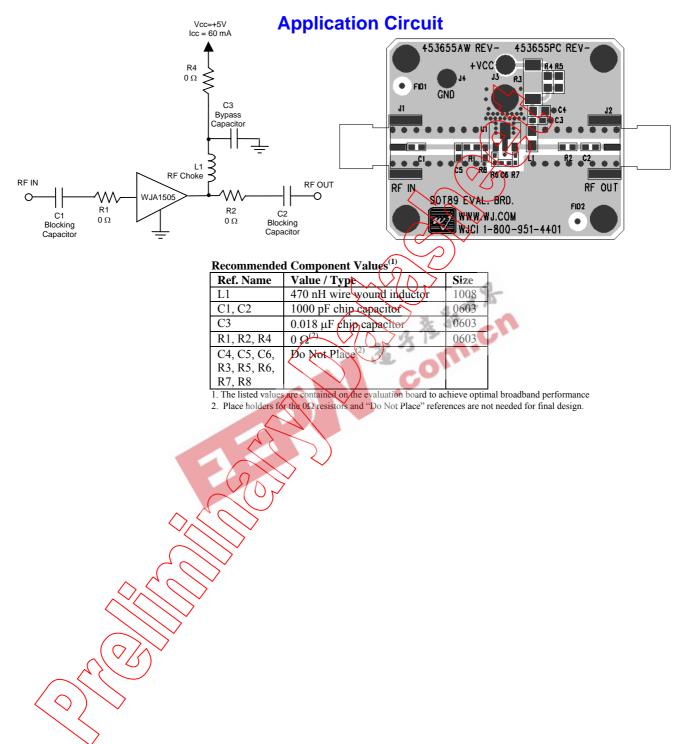
Parameter	Units	Min		Nax
Operational Bandwidth	MHz	50 <		1000
Test Frequency	MHz		200	\sim
Gain	dB	$\left(\mathcal{S}\right)$	19,6	
Input Return Loss	dB		18	
Output Return Loss	dB 📈	$\langle \rangle$	16	
Output P1dB	dBm	\sim	+19	
Output IP3 ⁽²⁾	dBm	\sim	+35	
Noise Figure	dB	\sim	4	
Device Voltage	N	2	5	
Device Current	mA		60	

Test conditions: 25 °C, Supply Voltage = +5 V, 50 Ω System. 30IP measured with two tones at an output power of 0 dBm/tone separated by 1 MHz. The suppression on the largest 1M3 product is used to calculate the 30IP using a 2:1 rule.

Parameter	Units	Typical			
Frequency	MHz	50	100	200	500
S21	dB	20	19.7	19.6	18.9
S11	dB	-19	-19	-18	-14
S22	dB	-17	-18	-16	-11
Output P1dB	dBm	+19	+19	+19	+19
Output IP3 ⁽²⁾	dBm	+36	+36	+35	+34
Noise Figure	dB	3.9	4	4	4.1

Absolute Maximum Rating

Parameter	Rating	P	art No.	Description
Operating Case Temperature	-40 to +85 °C	W	/JA1505	+5V Active Bias InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 Package)
Storage Temperature	-55 to +150 °C	W	/JA1505-PCB	50 – 1000 MHz Fully Assembled Eval. Board


Operation of this device above any of these parameters may cause permanent damage

Ordering Information

Part No.	Description
WJA1505	+5V Active Bias InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-89 Package)
WJA1505-PCB	50 – 1000 MHz Fully Assembled Eval. Board

Specifications and information are subject to change without notice

Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Broduct Marking Outline Drawing The WIA1505 will be marked with an "A1505" designator with an alphanumeric lot code marked below the part designator. A1505 Pape and reel specifications for this part are XXXX-X located on the website in the "Application Notes" section. Altern (May be - 2x 81 (0.10 (0.004) (0 1 2 (0) 4 **MSL / ESD Rating** .016 .01 .35 (.014) 4.40 4.50 (.017) 4.60 (.181) 1.83 Caution! ESD sensitive device. (.17) ESD Rating: Class 1C Value: Passes $\geq 1000V$ min. Human Body Model (HBM) Test: Land Pattern Standard: JEDEC Standard JESD22-A114 ESD Rating: Class IV Ø.254 (.010) PLATED THRU GROUND VIAS Passes ≥ 1000 V min. Value: Test: Charged Device Model (CDM) .76 (.030 ⊷.38 (.0 Standard: JEDEC Standard JESD22-C101 76 (.030) TYP 0 0 ф **Mounting Config. Notes** 14 1. Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm 2.54 (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010"). 2. Add as much copper as possible to inner and outer layers .58 (.023) near the part to ensure optimal thermal performance. H 3. Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink. С 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink. 2 11 (083) 5. RF trace width depends upon the PC board material and construction. 6. Use 1 oz. Copper minimum. 7. All dimensions are in millimeters (inches). Angles are in degrees.