


PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	-150	Vdc	
Collector-Base Voltage	VCBO	-160	Vdc	
Emitter-Base Voltage	VEBO	-5.0	Vdc	
Collector Current — Continuous	IC	-500	mAdc	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation TA = 25°C Derate above 25°C	PD	225 1.8	mW mW/°C
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate,(2) T _A = 25°C Derate above 25°C	PD	1	mW mW/°C
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$		°C/W
Junction and Storage Temperature	TJ, T _{stg}	-55 to +150	°C

DEVICE MARKING

MBT5401LT1 = 2L

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	•			
Collector – Emitter Breakdown Voltage (I _C = -1.0 mAdc, I _B = 0)	V(BR)CEO	-150	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -100 \mu Adc, I_E = 0)$	V(BR)CBO	-160	_	Vdc
Emitter – Base Breakdown Voltage ($I_C = -10 \mu Adc$, $I_C = 0$)	V(BR)EBO	-5.0	_	Vdc
Collector Cutoff Current $(V_{CB} = -120 \text{ Vdc}, I_{E} = 0)$ $(V_{CB} = -120 \text{ Vdc}, I_{E} = 0, T_{A} = 100^{\circ}\text{C})$	ı		-50 -50	nAdc μAdc

Wing Shing Computer Components Co., (H.K.)Ltd.
Homepage: http://www.wingshing.com

Tel:(852) 2341 9276 Fax:(852) 2797 8153
E-mail: wsccltd@hk star.com

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS	-	-	-	-
DC Current Gain $ \begin{array}{l} (I_{C}=-1.0 \text{ mAdc, } V_{CE}=-5.0 \text{ Vdc)} \\ (I_{C}=-10 \text{ mAdc, } V_{CE}=-5.0 \text{ Vdc)} \\ (I_{C}=-50 \text{ mAdc, } V_{CE}=-5.0 \text{ Vdc)} \end{array} $	hFE		 240 	1
Collector – Emitter Saturation Voltage ($I_C = -10$ mAdc, $I_B = -1.0$ mAdc) ($I_C = -50$ mAdc, $I_B = -5.0$ mAdc)	VCE(sat)	-	-0.2 -0.5	Vdc
Base-Emitter Saturation Voltage (I _C = -10 mAdc, I _B = -1.0 mAdc) (I _C = -50 mAdc, I _B = -5.0 mAdc)	VBE(sat)	_ _	-1.0 -1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	CIL			
Current – Gain — Bandwidth Product (IC = -10 mAdc, VCE = -10 Vdc, f = 100 MHz)	fΤ	100	300	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	_	6.0	pF
Small Signal Current Gain (IC = -1.0 mAdc, VCE = -10 Vdc, f = 1.0 kHz)	h _{fe}	40	200	_
Noise Figure (I _C = $-200 \mu\text{Adc}$, V _{CE} = -5.0Vdc , R _S = 10Ω , f = 1.0kHz)	NF	_	8.0	dB