12-bit Serial Input Voltage Output DAC Production Data June 1999, Rev1.0 #### **FEATURES** - 12-bit voltage output DAC - Single supply from 2.7V to 5.5V - DNL ±0.5 LSB, INL ±1.9 LSB - Very low power consumption (3V supply): - 900μW, slow mode - 2.1mW, fast mode - TMS320, (Q)SPI™, and Microwire™ compatible serial interface - Programmable settling time of 4μs or 12μs typical - · High impedance reference input buffer #### **APPLICATIONS** - · Battery powered test instruments - · Digital offset and gain adjustment - · Battery operated/remote industrial controls - . Machine and motion control devices - Wireless telephone and communication systems - Speech synthesis - Arbitrary waveform generation ### **ORDERING INFORMATION** | DEVICE | DEVICE TEMP. RANGE | | | | |----------|--------------------|------------|--|--| | WM2616CD | 0° to 70°C | 8-pin SOIC | | | | WM2616ID | -40° to 85°C | 8-pin SOIC | | | # BLOCK DIAGRAM #### **DESCRIPTION** The WM2616 is a 12-bit voltage output, resistor string digital-toanalogue converter that can be powered down under software control. Power down reduces current consumption to 10nA. The device has been designed to interface efficiently to industry standard microprocessors and DSPs, including the TMS320 family. The WM2616 is programmed with a 16-bit serial word comprising 4 control bits and 12 data bits. Excellent performance is delivered with a typical DNL of 0.5LSBs. The settling time of the DAC is programmable to allow the designer to optimize speed versus power dissipation. The output stage is buffered by a x2 gain rail-to-rail amplifier, which features a Class AB output stage. The device is available in an 8-pin SOIC package. Commercial temperature (0° to 70°C) and Industrial temperature (-40° to 85°C) variants are supported. #### TYPICAL PERFORMANCE Lutton Court, Bernard Terrace, Edinburgh, EH8 9NX, UK Tel: +44 (0) 131 667 9386 Fax: +44 (0) 131 667 5176 Email: sales@wolfson.co.uk http://www.wolfson.co.uk WM2616 Production Data Rev 1.0 #### PIN CONFIGURATION #### **PIN DESCRIPTION** | PIN NO | NAME | TYPE | DESCRIPTION | | | | | |--------|-------|-----------------|--|--|--|--|--| | 1 | DIN | Digital input | Serial data input. | | | | | | 2 | SCLK | Digital input | Serial clock input. | | | | | | 3 | NCS | Digital input | Chip select. This pin is active low. | | | | | | 4 | FS | Digital input | Frame synchronisation for serial input data. | | | | | | 5 | AGND | Supply | Analogue ground. | | | | | | 6 | REFIN | Analogue input | Voltage reference input. | | | | | | 7 | OUT | Analogue output | DAC analogue output | | | | | | 8 | VDD | Supply | Positive power supply. | | | | | #### **ABSOLUTE MAXIMUM RATINGS** Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device | CONDITION | | MIN | MAX | |---|----------------------|--------------|--------------| | Supply voltage, VDD to AGND | | 7V | | | Digital input voltage | -0.3V | VDD + 0.3V | | | Reference input voltage | | -0.3V | VDD + 0.3V | | Operating temperature range, T _A | WM2616CD
WM2616ID | 0°C
-40°C | 70°C
85°C | | Storage temperature | | -65°C | 150°C | | Lead temperature 1.6mm (1/16 inch) solde | ring for 10 seconds | | 260°C | #### RECOMMENDED OPERATING CONDITIONS | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------------------|-------------------|--------------------|-----|-----|-----------|------| | Supply voltage | VDD | | 2.7 | | 5.5 | V | | High-level digital input voltage | V _{IH} | VDD = 2.7V to 5.5V | 2 | | | V | | Low-level digital input voltage | V _{IL} | VDD = 2.7V to 5.5V | | | 0.8 | V | | Reference voltage to REFIN | V_{REF} | See Note | | | VDD - 1.5 | V | | Load resistance | R_L | | 2 | 10 | | kΩ | | Load capacitance | C _L | | | | 100 | pF | | Serial clock rate | f _{SCLK} | | | | 20 | MHz | | Operating free-air temperature | T _A | WM2616CD | 0 | | 70 | °C | | | | WM2616ID | -40 | | 85 | °C | Note: Reference input voltages greater then VDD/2 will cause saturation for large DAC codes. Production Data Rev 1.0 WM2616 # **ELECTRICAL CHARACTERISTICS** #### **Test Conditions:** R_L = 10k Ω , C_L = 100pF. VDD = 5V \pm 10%, V_{REF} = 2.048V and VDD = 3V \pm 10%, V_{REF} = 1.024V over recommended operating free-air temperature range (unless noted otherwise). | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---|-----------------|---|-----|------|-----------|--------| | Static DAC Specifications | L | • | 1 | | | | | Resolution | | | 12 | | | bits | | Integral non-linearity | INL | See Note 1 | | ±1.9 | ±4 | LSB | | Differential non-linearity | DNL | See Note 2 | | ±0.5 | ±1 | LSB | | Zero code error | ZCE | See Note 3 | | 2 | ±10 | mV | | Gain error | GE | See Note 4 | | 0.1 | ±0.6 | % FSR | | D.c. power supply rejection ratio | d.c. PSRR | See Note 5 | | 0.5 | | mV/V | | Zero code error temperature coefficient | | See Note 6 | | 10 | | ppm/°C | | Gain error temperature coefficient | | See Note 6 | | 10 | | ppm/°C | | DAC Output Specifications | | | | - | | | | Output voltage range | | | 0 | | VDD - 0.1 | V | | Output load regulation | | 2kΩ to 10kΩ load | 2 | 0.1 | 0.25 | % | | output load togalation | | See Note 7 | 本户 | 0.1 | 0.20 | ,,, | | Power Supplies | | 76.30 | | | | | | Active supply current | I _{DD} | No load, $V_{IH} = VDD$, $V_{IL} = 0V$ | | | | | | | | VDD = 5V, | | 0.4 | 0.6 | mA | | | | V _{REF} = 2.048V Slow
VDD = 5V, | | 0.9 | 1.35 | mA | | | | $V_{REF} = 2.048V$ Fast | | 0.9 | 1.33 | IIIA | | | | VDD = 3V, | | 0.3 | 0.45 | mA | | | | V _{REF} = 1.024V Slow | - | 0.7 | | | | | | VDD = 3V,
$V_{REF} = 1.024V$ Fast | | 0.7 | 1.1 | mA | | | | See Note 8 | | | | | | Power down supply current | | No load, | | 0.01 | 10 | μΑ | | | | all digital inputs 0V or VDD
See Note 9 | | | | | | Dynamic DAC Specifications | | Occ Note 3 | ı | 1 | | | | Slew rate | | DAC code 128 to 4095, | | | | | | | | 10%-90% | | | | | | | | Slow | 0.5 | 0.9 | | V/μs | | | | Fast
See Note 10 | 2.5 | 3.6 | | V/μs | | Settling time | | DAC code 128 to 4095 | | | | | | 3 | | Slow | | 12.0 | | μs | | | | Fast | | 4.0 | | μs | | Olital | | See Note 11 | | 40 | | | | Glitch energy | 6::5 | Code 2047 to 2048 | 0.5 | 10 | | nV-s | | Signal to noise ratio | SNR | fs = 400ksps, f _{OUT} = 1kHz,
BW = 20kHz | 66 | 74 | | dB | | Cignal to naine and distortion ratio | SNRD | See Note 12 | F 4 | 60 | | e1D | | Signal to noise and distortion ratio | SINKD | fs = 400ksps, f _{OUT} = 1kHz,
BW = 20kHz | 54 | 66 | | dB | | Total harmonic distortion | THD | See Note 12
fs = 400ksps, f _{OUT} = 1kHz, | | -68 | -56 | dB | | Total Harmonio distoluti | 1110 | BW = 20kHz
See Note 12 | | -00 | -30 | QD. | | Spurious free dynamic range | SPFDR | fs = 400ksps, f _{OUT} = 1kHz,
BW = 20kHz | 56 | 70 | | dB | | | | See Note 12 | | | | | WM2616 Production Data Rev 1.0 #### **Test Conditions:** R_L = 10k Ω , C_L = 100pF. VDD = 5V \pm 10%, V_{REF} = 2.048V and VDD = 3V \pm 10%, V_{REF} = 1.024V over recommended operating free-air temperature range (unless noted otherwise). | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------------|--------------------|---|-----|------------|-----|------------| | Reference | | | | | | | | Reference input resistance | R _{REFIN} | | | 10 | | ΜΩ | | Reference input capacitance | C _{REFIN} | | | 5 | | pF | | Reference feedthrough | | V_{REF} = 1 V_{PP} at 1 kHz
+ 1.024 V dc, DAC code 0 | | -75 | | dB | | Reference input bandwidth | | V_{REF} = 0.2 V_{PP} + 1.024 V dc DAC code 2048 Slow Fast | | 0.5
1.3 | | MHz
MHz | | Digital Inputs | | rast | | 1.3 | | IVII IZ | | High level input current | I _{IH} | Input voltage = VDD | | | 1 | μΑ | | Low level input current | I _{IL} | Input voltage = 0V | | | -1 | μΑ | | Input capacitance | Cı | | | 3 | | pF | #### Notes: - 1. **Integral non-linearity** (INL) is the maximum deviation of the output from the line between zero and full scale (excluding the effects of zero code and full scale errors). - 2. **Differential non-linearity** (DNL) is the difference between the measured and ideal 1LSB amplitude change of any adjacent two codes. A guarantee of monotonicity means the output voltage changes in the same direction (or remains constant) as a change in digital input code. - 3. **Zero code error** is the voltage output when the DAC input code is zero. - 4. Gain error is the deviation from the ideal full scale output excluding the effects of zero code error. - 5. **Power supply rejection ratio** is measured by varying VDD from 4.5V to 5.5V and measuring the proportion of this signal imposed on the zero code error and the gain error. - 6. Zero code error and Gain error temperature coefficients are normalised to full scale voltage. - 7. **Output load regulation** is the difference between the output voltage at full scale with a $10k\Omega$ load and $2k\Omega$ load. It is expressed as a percentage of the full scale output voltage with a $10k\Omega$ load. - 8. I_{DD} is measured while continuously writing code 2048 to the DAC. For $V_{IH} < VDD$ 0.7V and $V_{IL} > 0.7V$ supply current will increase. - 9. Typical supply current in power down mode is 10nA. Production test limits are wider for speed of test. - 10. Slew rate results are for the lower value of the rising and falling edge slew rates - 11. **Settling time** is the time taken for the signal to settle to within 0.5LSB of the final measured value for both rising and falling edges. Limits are ensured by design and characterisation, but are not production tested. - 12. SNR, SNRD, THD and SPFDR are measured on a synthesised sinewave at frequency four generated with a sampling frequency fs. Production Data Rev 1.0 WM2616 ## **SERIAL INTERFACE** Figure 1 Timing Diagram #### **Test Conditions:** R_L = $10k\Omega$, C_L = 100pF. VDD = $5V \pm 10\%$, V_{REF} = 2.048V and VDD = $3V \pm 10\%$, V_{REF} = 1.024V over recommended operating free-air temperature range (unless noted otherwise). | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---|-----|-----|-----|------| | t _{SUCSFS} | Setup time NCS low before negative FS edge. | 10 | | | ns | | t _{SUFS} | Setup time FS low before first negative SCLK edge. | 8 | | | ns | | t _{SUC16FS} | Setup time, sixteenth negative SCLK edge after FS low on which D0 is sampled before rising edge of FS. | 10 | | | ns | | t _{SUC16} CS | Setup time, sixteenth positive SCLK edge (first positive after D0 sampled) before NCS rising edge. If FS is used instead of the sixteenth positive edge to update the DAC, then the setup time is between the FS rising edge and the NCS rising edge. | 10 | | | ns | | t_{WH} | Pulse duration, SCLK high. | 25 | | | ns | | t_{WL} | Pulse duration, SCLK low. | 25 | | | ns | | t _{SUD} | Setup time, data ready before SCLK falling edge. | 8 | | | ns | | t _{HD} | Hold time, data held valid after SCLK falling edge. | 5 | | | ns | | t _{WHFS} | Pulse duration, FS high. | 20 | | | ns | # **TYPICAL PERFORMANCE GRAPHS** Figure 3 Sink Current VDD = 3V Figure 5 Source Current VDD = 3V Figure 4 Sink Current VDD = 5V Figure 6 Source Current VDD = 5V Production Data Rev 1.0 WM2616 #### **DEVICE DESCRIPTION** #### **GENERAL FUNCTION** The device uses a resistor string network buffered with an op amp to convert 12-bit digital data to analogue voltage levels (see Block Diagram). The output voltage is determined by the reference input voltage and the input code according to the following relationship: Output voltage = $$2(V_{REFIN})\frac{CODE}{4096}$$ | | INPUT | | OUTPUT | |------|-------|------|--| | 1111 | 1111 | 1111 | 2(V _{REF}) 4095
4096 | | | : | | : | | 1000 | 0000 | 0001 | 2(V _{REF}) 2049 4096 | | 1000 | 0000 | 0000 | $2(V_{REF})\frac{2048}{4096} = V_{REF}$ | | 0111 | 1111 | 1111 | 2(V _{REF}) ²⁰⁴⁷ / ₄₀₉₆ | | | : | | - A 70 | | 0000 | 0000 | 0001 | 2(V _{REF}) 1/4096 | | 0000 | 0000 | 0000 | 0V | Table 1 Binary Code Table (0V to 2V_{REFIN} Output), Gain = 2 #### POWER ON RESET An internal power-on-reset circuit resets the DAC register to all 0s on power-up. #### **BUFFER AMPLIFIER** The output buffer has a near rail-to-rail output with short circuit protection and can reliably drive a $2k\Omega$ load with a 100pF load capacitance. #### **EXTERNAL REFERENCE** The reference voltage input is buffered which makes the DAC input resistance independent of code. The REFIN pin has an input resistance of $10M\Omega$ and an input capacitance of typically 5pF. The reference voltage determines the DAC full-scale output. #### **SERIAL INTERFACE** Explanation of data transfer: First, the device has to be enabled with NCS set to low. Then, a falling edge of FS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred, the next rising edge on SCLK or FS causes the content of the shift register to be moved to the DAC latch which updates the voltage output to the new level. The serial interface of the device can be used in two basic modes: - four wire (with chip select) - three wire (without chip select) Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of the data source (DSP or microcontroller). If there is no need to have more than one device on the serial bus, then NCS can be tied low. #### **SERIAL CLOCK AND UPDATE RATE** Figure 1 shows the device timing. The maximum serial rate is: $$f_{SCLK}max = \frac{1}{t_{WCH\,min} + t_{WCL\,min}} = 20MHz$$ The digital update rate is limited to an 800ns period, or 1.25MHz frequency. However, the DAC settling time to 12 bits limits the update rate for large input step transitions. WM2616 Production Data Rev 1.0 #### **SOFTWARE CONFIGURATION OPTIONS** The 16 bits of data can be transferred with the sequence shown in Table 2. D11-D0 contains the 12-bit data word. D14-D13 hold the programmable options. | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | |-----|-----|-----|-----|-------------------------|-----|----|----|----|----|----|----|----|----|----|----| | х | SPD | PWR | х | New DAC value (12 bits) | | | | | | | | | | | | Table 2 Register Map #### PROGRAMMABLE SETTLING TIME Settling time is a software selectable 12 μ s or 4 μ s typical, to within ±0.5LSB of final value. This is controlled by the value of D14. A ONE defines a settling time of 4 μ s, a ZERO defines a settling time of 12 μ s. #### PROGRAMMABLE POWER DOWN The power down function is controlled by D13. A ZERO configures the device as active, or fully powered up, a ONE configures the device into power down mode. When the power down function is released the device reverts to the DAC code set prior to power down. **WM2616** Production Data Rev 1.0 #### **PACKAGE DIMENSIONS** | | | nsions | _ | nsions | | | | | | |---------|------------------|--------|-----------|--------|--|--|--|--|--| | Symbols | (mm) (Inches | | | hes) | | | | | | | | MIN | MAX | MIN | MAX | | | | | | | Α | 1.35 | 1.75 | 0.0532 | 0.0688 | | | | | | | A_1 | 0.10 | 0.25 | 0.0040 | 0.0098 | | | | | | | В | 0.33 | 0.51 | 0.0130 | 0.0200 | | | | | | | С | 0.19 | 0.25 | 0.0075 | 0.0098 | | | | | | | D | 4.80 | 5.00 | 0.1890 | 0.1968 | | | | | | | е | 1.27 | BSC | 0.050 BSC | | | | | | | | E | 3.80 | 4.00 | 0.1497 | 0.1574 | | | | | | | h | 0.25 | 0.50 | 0.0099 | 0.0196 | | | | | | | Н | 5.80 | 6.20 | 0.2284 | 0.2440 | | | | | | | L | 0.40 | 1.27 | 0.0160 | 0.0500 | | | | | | | α | 0° | 8° | 0° | 8° | | | | | | | | | | | | | | | | | | REF: | JEDEC.95, MS-012 | | | | | | | | | - NOTES: A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS (INCHES). B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE. C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM (0.010IN). D. MEETS JEDEC.95 MS-012, VARIATION = AA. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.