Data Sheet June 1, 2006 FN8128.3 ### CPU Supervisor with 16Kbit SPI EEPROM ### Description These devices combine four popular functions, Power-on Reset Control, Watchdog Timer, Supply Voltage Supervision, and Block Lock Protect Serial EEPROM Memory in one package. This combination lowers system cost, reduces board space requirements, and increases reliability. Applying power to the device activates the power-on reset circuit which holds $\overline{\text{RESET}}/\text{RESET}$ active for a period of time. This allows the power supply and oscillator to stabilize before the processor can execute code. The Watchdog Timer provides an independent protection mechanism for microcontrollers. When the microcontroller fails to restart a timer within a selectable time out interval, the device activates the RESET/RESET signal. The user selects the interval from three preset values. Once selected, the interval does not change, even after cycling the power. The device's low V_{CC} detection circuitry protects the user's system from low voltage conditions, resetting the system when V_{CC} falls below the minimum V_{CC} trip point. RESET/RESET is asserted until V_{CC} returns to proper operating level and stabilizes. Five industry standard V_{TRIP} thresholds are available, however, Intersil's unique circuits allow the threshold to be reprogrammed to meet custom requirements or to fine-tune the threshold for applications requiring higher precision. ### **Features** - · Selectable watchdog timer - Low V_{CC} detection and reset assertion - Five standard reset threshold voltages - Re-program low V_{CC} reset threshold voltage using special programming sequence - Reset signal valid to V_{CC} = 1V - Determine watchdog or low voltage reset with a volatile flag bit - · Long battery life with low power consumption - <50µA max standby current, watchdog on - <1µA max standby current, watchdog off - <400µA max active current during read - · 16kbits of EEPROM - Built-in inadvertent write protection - Power-up/power-down protection circuitry - Protect 0, 1/4, 1/2 or all of EEPROM array with Block Lock[™] protection - In-circuit programmable ROM mode - 2MHz SPI interface modes (0,0 & 1,1) - Minimize EEPROM programming time - 32-byte page write mode - Self-timed write cycle - 5ms write cycle time (typical) - 2.7V to 5.5V and 4.5V to 5.5V power supply operation - Available packages: 14 Ld TSSOP, 8 Ld SOIC, 8 Ld PDIP - · Pb-free plus anneal available (RoHS compliant) #### **Pinouts** # **Ordering Information** | PART NUMBER
RESET
(ACTIVE LOW) | PART
MARKING | PART NUMBER
RESET
(ACTIVE HIGH) | PART
MARKING | V _{CC} RANGE
(V) | V _{TRIP} RANGE | TEMP
RANGE (°C) | PACKAGE | PKG.
DWG.# | |--------------------------------------|-----------------|---------------------------------------|-----------------|------------------------------|-------------------------|--------------------|--------------------------|---------------| | X5163P | X5163P | X5165P | X5165P | 4.5-5.5 | 4.25-4.5 | 0 to 70 | 8 Ld PDIP | MDP0031 | | X5163PZ (Note) | X5163P Z | X5165PZ (Note) | X5165P Z | | | 0 to 70 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163PI | X5163P I | X5165PI | X5165P I | | | -40 to 85 | 8 Ld PDIP | MDP0031 | | X5163PIZ (Note) | X5163P Z I | X5165PIZ (Note) | X5165P Z I | | | -40 to 85 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163S8* | X5163 | X5165S8* | X5165 | | | 0 to 70 | 8 Ld SOIC | MDP0027 | | X5163S8Z* (Note) | X5163 Z | X5165S8Z*
(Note) | X5165 Z | | | 0 to 70 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163S8I* | X5163 I | X5165S8I* | X5165 I | | | -40 to 85 | 8 Ld SOIC | MDP0027 | | X5163S8IZ*
(Note) | X5163 Z I | X5165S8IZ*
(Note) | X5165 Z I | | | -40 to 85 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163V14* | X5163V | X5165V14* | X5165V | | 48 | 0 to 70 | 14 Ld TSSOP | M14.173 | | X5163V14Z*
(Note) | X5163V Z | X5165V14Z*
(Note) | X5165V Z | | 255.27 | 0 to 70 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163V14I* | X5163V I | X5165V14I* | X5165V I | ~ B | 19 6 | -40 to 85 | 14 Ld TSSOP | M14.173 | | X5163V14IZ*
(Note) | X5163V Z I | X5165V14IZ*
(Note) | X5165V Z I | 132 | OW | -40 to 85 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163P-2.7 | X5163P F | X5165P-2.7 | X5165P F | 2.7-5. 5 | 2.55-2.7 | 0 to 70 | 8 Ld PDIP | MDP0031 | | X5163PZ-2.7
(Note) | X5163P Z F | X5165PZ-2.7
(Note) | X5165P Z F | | | 0 to 70 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163PI-2.7 | X5163P G | X5165PI-2.7 | X5165P G | | | -40 to 85 | 8 Ld PDIP | MDP0031 | | X5163PIZ-2.7
(Note) | X5163P Z G | X5165PIZ-2.7
(Note) | X5165P Z G | | | -40 to 85 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163S8-2.7* | X5163 F | X5165S8-2.7* | X5165 F | | | 0 to 70 | 8 Ld SOIC | MDP0027 | | X5163S8Z-2.7*
(Note) | X5163 Z F | X5165S8Z-2.7*
(Note) | X5165 Z F | | | 0 to 70 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163S8I-2.7* | X5163 G | X5165S8I-2.7* | X5165 G | | | -40 to 85 | 8 Ld SOIC | MDP0027 | | X5163S8IZ-2.7*
(Note) | X5163 Z G | X5165S8IZ-2.7*
(Note) | X5165 Z G | | | -40 to 85 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163V14-2.7* | X5163V F | X5165V14-2.7* | X5165V F | | | 0 to 70 | 14 Ld TSSOP | M14.173 | | X5163V14Z-2.7*
(Note) | X5163V Z F | X5165V14Z-2.7*
(Note) | X5165V Z F | | | 0 to 70 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163V14I-2.7* | X5163V G | X5165V14I-2.7* | X5165V G | | | -40 to 85 | 14 Ld TSSOP | M14.173 | | X5163V14IZ-2.7*
(Note) | X5163V Z G | X5165V14IZ-2.7*
(Note) | X5165V Z G | | | -40 to 85 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163P-2.7A | X5163P AN | X5165P-2.7A | X5165P AN | 2.7-5.5 | 2.85-3.0 | 0 to 70 | 8 Ld PDIP | MDP0031 | | X5163PZ-2.7A
(Note) | X5163P Z AN | X5165PZ-2.7A
(Note) | X5165P Z AN | | | 0 to 70 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163PI-2.7A | X5163P AP | X5165PI-2.7A | X5165P AP | | | -40 to 85 | 8 Ld PDIP | MDP0031 | | X5163PIZ-2.7A
(Note) | X5163P Z AP | X5165PIZ-2.7A
(Note) | X5165P Z AP | | | -40 to 85 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163S8-2.7A* | X5163 AN | X5165S8-2.7A | X5165 AN | | | 0 to 70 | 8 Ld SOIC | MDP0027 | ### **Ordering Information** (Continued) | PART NUMBER
RESET
(ACTIVE LOW) | PART
MARKING | PART NUMBER
RESET
(ACTIVE HIGH) | PART
MARKING | V _{CC} RANGE
(V) | V _{TRIP} RANGE | TEMP
RANGE (°C) | PACKAGE | PKG.
DWG.# | |--------------------------------------|-----------------|---------------------------------------|-----------------|------------------------------|-------------------------|--------------------|--------------------------|---------------| | X5163S8Z-2.7A*
(Note) | X5163 Z AN | X5165S8Z-2.7A
(Note) | X5165 Z AN | 2.7-5.5 | 2.85-3.0 | 0 to 70 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163S8I-2.7A | X5163 AP | X5165S8I-2.7A | X5165 AP | | | -40 to 85 | 8 Ld SOIC | MDP0027 | | X5163S8IZ-2.7A
(Note) | X5163 Z AP | X5165S8IZ-2.7A
(Note) | X5165 Z AP | | | -40 to 85 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163V14-2.7A | X5163V AN | X5165V14-2.7A | X5165V AN | | | 0 to 70 | 14 Ld TSSOP | M14.173 | | X5163V14Z-2.7A
(Note) | X5163V Z AN | X5165V14Z-2.7A
(Note) | X5165V Z AN | | | 0 to 70 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163V14I-2.7A | X5163V AP | X5165V14I-2.7A | X5165V AP | | | -40 to 85 | 14 Ld TSSOP | M14.173 | | X5163V14IZ-2.7A
(Note) | X5163V Z AP | X5165V14IZ-2.7A
(Note) | X5165V Z AP | | | -40 to 85 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163P-4.5A | X5163P AL | X5165P-4.5A | X5165P AL | 4.5-5.5 | 4.5-4.75 | 0 to 70 | 8 Ld PDIP | MDP0031 | | X5163PZ-4.5A
(Note) | X5163P Z AL | X5165PZ-4.5A
(Note) | X5165P Z AL | | - 8- | 0 to 70 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163PI-4.5A | X5163P AM | X5165PI-4.5A | X5165P AM | , | 43.35 | -40 to 85 | 8 Ld PDIP | MDP0031 | | X5163PIZ-4.5A
(Note) | X5163P Z AM | X5165PIZ-4.5A
(Note) | X5165P Z AM | 36 B | om.c | -40 to 85 | 8 Ld PDIP**
(Pb-free) | MDP0031 | | X5163S8-4.5A | X5163 AL | X5165S8-4.5A | X5165 AL | | 0,,, | 0 to 70 | 8 Ld SOIC | MDP0027 | | X5163S8Z-4.5A
(Note) | X5163 Z AL | X5165S8Z-4.5A
(Note) | X5165 Z AL | 7 | | 0 to 70 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163S8I-4.5A | X5163 AM | X5165S8I-4.5A | X5165 AM | | | -40 to 85 | 8 Ld SOIC | MDP0027 | | X5163S8IZ-4.5A
(Note) | X5163 Z AM | X5165S8IZ-4.5A
(Note) | X5165 Z AM | | | -40 to 85 | 8 Ld SOIC
(Pb-free) | MDP0027 | | X5163V14-4.5A | X5163V AL | X5165V14-4.5A | X5165V AL | | | 0 to 70 | 14 Ld TSSOP | M14.173 | | X5163V14Z-4.5A
(Note) | X5163V Z AL | X5165V14Z-4.5A
(Note) | X5165V Z AL | | | 0 to 70 | 14 Ld TSSOP
(Pb-free) | M14.173 | | X5163V14I-4.5A | X5163V AM | X5165V14I-4.5A | X5165V AM | | | -40 to 85 | 14 Ld TSSOP | M14.173 | | X5163V14IZ-4.5A
(Note) | X5163V Z AM | X5165V14IZ-4.5A
(Note) | X5165V Z AM | | | -40 to 85 | 14 Ld TSSOP
(Pb-free) | M14.173 | ^{*}Add "T1" suffix for tape and reel. <u>intersil</u> ^{**}Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. # Block Diagram # Pin Description | PIN
(SOIC/PDIP) | PIN TSSOP | NAME | FUNCTION | |--------------------|-----------|-----------------|--| | 1 | 1 | CS/WDI | Chip Select Input. \overline{CS} HIGH, deselects the device and the SO output pin is at a high impedance state. Unless a nonvolatile write cycle is underway, the device will be in the standby power mode. \overline{CS} LOW enables the device, placing it in the active power mode. Prior to the start of any operation after power-up, a HIGH to LOW transition on \overline{CS} is required Watchdog Input. A HIGH to LOW transition on the WDI pin restarts the Watchdog timer. The absence of a HIGH to LOW transition within the watchdog time out period results in $\overline{RESET}/RESET$ going active. | | 2 | 2 | SO | Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data out on this pin. The falling edge of the serial clock (SCK) clocks the data out. | | 3 | 6 | WP | Write Protect. The WP pin works in conjunction with a nonvolatile WPEN bit to "lock" the setting of the Watchdog Timer control and the memory write protect bits. | | 4 | 7 | V _{SS} | Ground | | 5 | 8 | SI | Serial Input. SI is a serial data input pin. Input all opcodes, byte addresses, and memory data on this pin. The rising edge of the serial clock (SCK) latches the input data. Send all opcodes (Table 1), addresses and data MSB first. | | 6 | 9 | SCK | Serial Clock. The Serial Clock controls the serial bus timing for data input and output. The rising edge of SCK latches in the opcode, address, or data bits present on the SI pin. The falling edge of SCK changes the data output on the SO pin. | | 7 | 13 | RESET/
RESET | Reset Output. $\overline{\text{RESET}}/\text{RESET}$ is an active LOW/HIGH, open drain output which goes active whenever V_{CC} falls below the minimum V_{CC} sense level. It will remain active until V_{CC} rises above the minimum V_{CC} sense level for 200ms. $\overline{\text{RESET}}/\overline{\text{RESET}}$ goes active if the Watchdog Timer is enabled and $\overline{\text{CS}}$ remains either HIGH or LOW longer than the selectable Watchdog time out period. A falling edge of $\overline{\text{CS}}$ will reset the Watchdog Timer. $\overline{\text{RESET}}/\overline{\text{RESET}}$ goes active on power-up at 1V and remains active for 200ms after the power supply stabilizes. | | 8 | 14 | V _{CC} | Supply Voltage | | | 3-5,10-12 | NC | No internal connections | ### **Principles Of Operation** #### Power-on Reset Application of power to the X5163, X5165 activates a Power-on Reset Circuit. This circuit goes active at 1V and pulls the RESET/RESET pin active. This signal prevents the system microprocessor from starting to operate with insufficient voltage or prior to stabilization of the oscillator. When V_{CC} exceeds the device V_{TRIP} value for 200ms (nominal) the circuit releases RESET/RESET, allowing the processor to begin executing code. #### Low Voltage Monitoring During operation, the X5163, X5165 monitors the V_{CC} level and asserts RESET/RESET if supply voltage falls below a preset minimum V_{TRIP} . The RESET/RESET signal prevents the microprocessor from operating in a power fail or brownout condition. The RESET/RESET signal remains active until the voltage drops below 1V. It also remains active until V_{CC} returns and exceeds V_{TRIP} for 200ms. #### Watchdog Timer The Watchdog Timer circuit monitors the microprocessor activity by monitoring the WDI input. The microprocessor must toggle the \overline{CS}/WDI pin periodically to prevent a RESET/RESET signal. The \overline{CS}/WDI pin must be toggled from HIGH to LOW prior to the expiration of the watchdog time out period. The state of two nonvolatile control bits in the Status Register determine the watchdog timer period. The microprocessor can change these watchdog bits, or they may be "locked" by tying the \overline{WP} pin LOW and setting the WPEN bit HIGH. ### V_{CC} Threshold Reset Procedure The X5163, X5165 has a standard V_{CC} threshold (V_{TRIP}) voltage. This value will not change over normal operating and storage conditions. However, in applications where the standard V_{TRIP} is not exactly right, or for higher precision in the V_{TRIP} value, the X5163, X5165 threshold may be adjusted. ### Setting the V_{TRIP} Voltage This procedure sets the V_{TRIP} to a higher voltage value. For example, if the current V_{TRIP} is 4.4V and the new V_{TRIP} is 4.6V, this procedure directly makes the change. If the new setting is lower than the current setting, then it is necessary to reset the trip point before setting the new value. To set the new V_{TRIP} voltage, apply the desired V_{TRIP} threshold to the V_{CC} pin and tie the \overline{CS} /WDI pin and the \overline{WP} pin HIGH. \overline{RESET} and SO pins are left unconnected. Then apply the programming voltage V_P to both SCK and SI and pulse \overline{CS} /WDI LOW then HIGH. Remove V_P and the sequence is complete. FIGURE 1. SET V_{TRIP} VOLTAGE ### Resetting the V_{TRIP} Voltage This procedure sets the V_{TRIP} to a "native" voltage level. For example, if the current V_{TRIP} is 4.4V and the V_{TRIP} is reset, the new V_{TRIP} is something less than 1.7V. This procedure must be used to set the voltage to a lower value. To reset the V_{TRIP} voltage, apply a voltage between 2.7 and 5.5V to the V_{CC} pin. Tie the $\overline{\text{CS}}/\text{WDI}$ pin, the $\overline{\text{WP}}$ pin, AND THE SCK pin HIGH. RESET and SO pins are left unconnected. Then apply the programming voltage V_P to the SI pin ONLY and pulse $\overline{\text{CS}}/\text{WDI}$ LOW then HIGH. Remove V_P and the sequence is complete. FIGURE 2. RESET V_{TRIP} VOLTAGE intersil FN8128.3 FIGURE 3. V_{TRIP} PROGRAMMING SEQUENCE FLOW CHART FIGURE 4. SAMPLE V_{TRIP} RESET CIRCUIT ### SPI Serial Memory The memory portion of the device is a CMOS Serial EEPROM array with Intersil's block lock protection. The array is internally organized as x 8. The device features a Serial Peripheral Interface (SPI) and software protocol allowing operation on a simple four-wire bus. The device utilizes Intersil's proprietary Direct Write[™] cell, providing a minimum endurance of 100,000 cycles and a minimum data retention of 100 years. The device is designed to interface directly with the synchronous Serial Peripheral Interface (SPI) of many popular microcontroller families. It contains an 8-bit instruction register that is accessed via the SI input, with data being clocked in on the rising edge of SCK. $\overline{\text{CS}}$ must be LOW during the entire operation. All instructions (Table 1), addresses and data are transferred MSB first. Data input on the SI line is latched on the first rising edge of SCK after $\overline{\text{CS}}$ goes LOW. Data is output on the SO line by the falling edge of SCK. SCK is static, allowing the user to stop the clock and then start it again to resume operations where left off. #### Write Enable Latch The device contains a Write Enable Latch. This latch must be SET before a Write Operation is initiated. The WREN instruction will set the latch and the WRDI instruction will reset the latch (Figure 7). This latch is automatically reset upon a power-up condition and after the completion of a valid Write Cycle. #### Status Register The RDSR instruction provides access to the Status Register. The Status Register may be read at any time, even during a Write Cycle. The Status Register is formatted as follows: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|-----|-----|-----|-----|-----|-----|-----| | WPEN | FLB | WD1 | WD0 | BL1 | BL0 | WEL | WIP | The Write-In-Progress (WIP) bit is a volatile, read only bit and indicates whether the device is busy with an internal nonvolatile write operation. The WIP bit is read using the RDSR instruction. When set to a "1", a nonvolatile write operation is in progress. When set to a "0", no write is in progress. #### TABLE 1. INSTRUCTION SET | INSTRUCTION NAME | INSTRUCTION FORMAT* | OPERATION | |------------------|---------------------|---| | WREN | 0000 0110 | Set the Write Enable Latch (Enable Write Operations) | | SFLB | 0000 0000 | Set Flag Bit | | WRDI/RFLB | 0000 0100 | Reset the Write Enable Latch/Reset Flag Bit | | RDSR | 0000 0101 | Read Status Register | | WRSR | 0000 0001 | Write Status Register (Watchdog,BlockLock,WPEN & Flag Bits) | | READ | 0000 0011 | Read Data from Memory Array Beginning at Selected Address | | WRITE | 0000 0010 | Write Data to Memory Array Beginning at Selected Address | NOTE: *Instructions are shown MSB in leftmost position. Instructions are transferred MSB first. #### **TABLE 2. BLOCK PROTECT MATRIX** | WREN CMD | STATUS REGISTER | DEVICE PIN | BLOCK | BLOCK | STATUS REGISTER | |----------|-----------------|------------|-----------------|-------------------|-----------------------------| | WEL | WPEN | WP# | PROTECTED BLOCK | UNPROTECTED BLOCK | WPEN, BL0, BL1, WD0,
WD1 | | 0 | X | Х | Protected | Protected | Protected | | 1 | 1 | 0 | Protected | Writable | Protected | | 1 | 0 | Х | Protected | Writable | Writable | | 1 | X | 1 | Protected | Writable | Writable | intersil FN8128.3 The Write Enable Latch (WEL) bit indicates the Status of the Write Enable Latch. When WEL = 1, the latch is set HIGH and when WEL = 0 the latch is reset LOW. The WEL bit is a volatile, read only bit. It can be set by the WREN instruction and can be reset by the WRDS instruction. The block lock bits, BL0 and BL1, set the level of block lock protection. These nonvolatile bits are programmed using the WRSR instruction and allow the user to protect one quarter, one half, all or none of the EEPROM array. Any portion of the array that is block lock protected can be read but not written. It will remain protected until the BL bits are altered to disable block lock protection of that portion of memory. | STATUS
REGISTER BITS | | ARRAY ADDRESSES PROTECTED | |-------------------------|---|---------------------------| | BL1 BL0 | | X516X | | 0 | 0 | None | | 0 | 1 | \$0600-\$07FF | | 1 | 0 | \$0400-\$07FF | | 1 | 1 | \$0000-\$07FF | The Watchdog Timer bits, WD0 and WD1, select the Watchdog Time Out Period. These nonvolatile bits are programmed with the WRSR instruction. | STATUS REC | GISTER BITS | WATCHDOG TIME OUT | |------------|-------------|-------------------| | WD1 | WD0 | (TYPICAL) | | 0 | 0 | 1.4 seconds | | 0 | 1 | 600 milliseconds | | STATUS REC | GISTER BITS | WATCHDOG TIME OUT | |------------|-------------|-------------------| | WD1 | WD0 | (TYPICAL) | | 1 | 0 | 200 milliseconds | | 1 | 1 | disabled | The FLAG bit shows the status of a volatile latch that can be set and reset by the system using the SFLB and RFLB instructions. The Flag bit is automatically reset upon power-up. This flag can be used by the system to determine whether a reset occurs as a result of a watchdog time out or power failure. The nonvolatile WPEN bit is programmed using the WRSR instruction. This bit works in conjunction with the $\overline{\text{WP}}$ pin to provide an In-Circuit Programmable ROM function (Table 2). $\overline{\text{WP}}$ is LOW and WPEN bit programmed HIGH disables all Status Register Write Operations. #### In Circuit Programmable ROM Mode This mechanism protects the block lock and Watchdog bits from inadvertent corruption. In the locked state (Programmable ROM Mode) the \overline{WP} pin is LOW and the nonvolatile bit WPEN is "1". This mode disables nonvolatile writes to the device's Status Register. Setting the WP pin LOW while WPEN is a "1" while an internal write cycle to the Status Register is in progress will not stop this write operation, but the operation disables subsequent write attempts to the Status Register. FIGURE 5. READ EEPROM ARRAY SEQUENCE When \overline{WP} is HIGH, all functions, including nonvolatile writes to the Status Register operate normally. Setting the WPEN bit in the Status Register to "0" blocks the \overline{WP} pin function, allowing writes to the Status Register when \overline{WP} is HIGH or LOW. Setting the WPEN bit to "1" while the \overline{WP} pin is LOW activates the Programmable ROM mode, thus requiring a change in the \overline{WP} pin prior to subsequent Status Register changes. This allows manufacturing to install the device in a system with \overline{WP} pin grounded and still be able to program the Status Register. Manufacturing can then load Configuration data, manufacturing time and other parameters into the EEPROM, then set the portion of memory to be protected by setting the block lock bits, and finally set the "OTP mode" by setting the WPEN bit. Data changes now require a hardware change. #### Read Sequence When reading from the EEPROM memory array, \overline{CS} is first pulled low to select the device. The 8-bit READ instruction is transmitted to the device, followed by the 16-bit address. After the READ opcode and address are sent, the data stored in the memory at the selected address is shifted out on the SO line. The data stored in memory at the next address can be read sequentially by continuing to provide clock pulses. The address is automatically incremented to the next higher address after each byte of data is shifted out. When the highest address is reached, the address counter rolls over to address \$0000 allowing the read cycle to be continued indefinitely. The read operation is terminated by taking \overline{CS} high. Refer to the Read EEPROM Array Sequence (Figure 5). To read the Status Register, the CS line is first pulled low to select the device followed by the 8-bit RDSR instruction. After the RDSR opcode is sent, the contents of the Status Register are shifted out on the SO line. Refer to the Read Status Register Sequence (Figure 6). #### Write Sequence Prior to any attempt to write data into the device, the "Write Enable" Latch (WEL) must first be set by issuing the WREN instruction (Figure 7). \overline{CS} is first taken LOW, then the WREN instruction is clocked into the device. After all eight bits of the instruction are transmitted, \overline{CS} must then be taken HIGH. If the user continues the Write Operation without taking \overline{CS} HIGH after issuing the WREN instruction, the Write Operation will be ignored. To write data to the EEPROM memory array, the user then issues the WRITE instruction followed by the 16 bit address and then the data to be written. Any unused address bits are specified to be "0's". The WRITE operation minimally takes 32 clocks. $\overline{\text{CS}}$ must go low and remain low for the duration of the operation. If the address counter reaches the end of a page and the clock continues, the counter will roll back to the first address of the page and overwrite any data that may have been previously written. For the Page Write Operation (byte or page write) to be completed, \overline{CS} can only be brought HIGH after bit 0 of the last data byte to be written is clocked in. If it is brought HIGH at any other time, the write operation will not be completed (Figure 8). To write to the Status Register, the WRSR instruction is followed by the data to be written (Figure 9). Data bits 0 and 1 must be "0". While the write is in progress following a Status Register or EEPROM Sequence, the Status Register may be read to check the WIP bit. During this time the WIP bit will be high. ### Operational Notes The device powers-up in the following state: - The device is in the low power standby state. - A HIGH to LOW transition on $\overline{\text{CS}}$ is required to enter an active state and receive an instruction. - · SO pin is high impedance. - The Write Enable Latch is reset. - · The Flag Bit is reset. - Reset Signal is active for tpuRST. #### **Data Protection** The following circuitry has been included to prevent inadvertent writes: - A WREN instruction must be issued to set the Write Enable Latch. - CS must come HIGH at the proper clock count in order to start a nonvolatile write cycle. FN8128.3 intersil FIGURE 6. READ STATUS REGISTER SEQUENCE 0 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31 INSTRUCTION 16 BIT ADDRESS DATA BYTE 1 1 15 14 13 --- 3 2 1 0 7 6 5 4 3 2 1 0 FIGURE 8. WRITE SEQUENCE cs SCK FIGURE 9. STATUS REGISTER WRITE SEQUENCE # Symbol Table | WAVEFORM | INPUTS | OUTPUTS | | |-----------------|-----------------------------------|-------------------------------------|-------------| | | MUST BE
STEADY | WILL BE
STEADY | 4.45 /16 | | _//// | MAY CHANGE
FROM LOW TO
HIGH | WILL CHANGE
FROM LOW TO
HIGH | A A A STORE | | | MAY CHANGE
FROM HIGH TO
LOW | WILL CHANGE
FROM HIGH TO
LOW | .com | | | DON'T CARE:
CHANGES
ALLOWED | CHANGING:
STATE NOT
KNOWN | | | >> | N/A | CENTER LINE
IS HIGH
IMPEDANCE | | ### X5163, X5165 ### **Absolute Maximum Ratings** ### **Recommended Operating Conditions** | Temperature under bias | 65 to +135°C | Temperature | |-----------------------------------|--------------|----------------| | Storage temperature | 65 to +150°C | Supply Voltage | | Voltage on any pin with | | | | respect to V _{SS} | 1.0V to +7V | | | D.C. output current | 5mA | | | Lead temperature (soldering, 10s) | 300°C | | Temperature. -40°C to +85°C Supply Voltage. 2.7V to 5.5V CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. ### **Operating Specifications** Over operating conditions unless otherwise specified. | | | | | LIMITS | | | |--------------------------------|---|--|-----------------------|--------|-----------------------|------| | SYMBOL | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | I _{CC1} | V _{CC} Write Current (Active) | SCK = V _{CC} x 0.1/V _{CC} x 0.9 @ 2MHz, SO = Open | | | 5 | mA | | I _{CC2} | V _{CC} Read Current (Active) | SCK = V _{CC} x 0.1/V _{CC} x 0.9 @ 2MHz, SO = Open | | | 0.4 | mA | | I _{SB1} | V _{CC} Standby Current WDT = OFF | $\overline{\text{CS}} = \text{V}_{\text{CC}}, \text{V}_{\text{IN}} = \text{V}_{\text{SS}} \text{ or V}_{\text{CC}}, \text{V}_{\text{CC}} = 5.5 \text{V}$ | | | 1 | μA | | I _{SB2} | V _{CC} Standby Current WDT = ON | $\overline{\text{CS}} = \text{V}_{\text{CC}}, \text{V}_{\text{IN}} = \text{V}_{\text{SS}} \text{ or V}_{\text{CC}}, \text{V}_{\text{CC}} = 5.5 \text{V}$ | * | | 50 | μA | | I _{SB3} | V _{CC} Standby Current WDT = ON | $\overline{\text{CS}} = \text{V}_{\text{CC}}, \text{V}_{\text{IN}} = \text{V}_{\text{SS}} \text{ or V}_{\text{CC}}, \text{V}_{\text{CC}} = 3.6 \text{V}$ | - | | 20 | μA | | I _{LI} | Input Leakage Current | V _{IN} = V _{SS} to V _{CC} | C. | 0.1 | 10 | μA | | I _{LO} | Output Leakage Current | $V_{IN} = V_{SS}$ to V_{CC}
$V_{OUT} = V_{SS}$ to V_{CC} | | 0.1 | 10 | μA | | V _{IL} ⁽¹⁾ | Input LOW Voltage | CO | -0.5 | | V _{CC} x 0.3 | V | | V _{IH} ⁽¹⁾ | Input HIGH Voltage | | V _{CC} x 0.7 | | V _{CC} + 0.5 | V | | V _{OL1} | Output LOW Voltage | V _{CC} > 3.3V, I _{OL} = 2.1mA | | | 0.4 | V | | V _{OL2} | Output LOW Voltage | $2V < V_{CC} \le 3.3V$, $I_{OL} = 1mA$ | | | 0.4 | V | | V _{OL3} | Output LOW Voltage | $V_{CC} \le 2V$, $I_{OL} = 0.5$ mA | | | 0.4 | V | | V _{OH1} | Output HIGH Voltage | $V_{CC} > 3.3V$, $I_{OH} = -1.0$ mA | V _{CC} - 0.8 | | | V | | V _{OH2} | Output HIGH Voltage | $2V < V_{CC} \le 3.3V$, $I_{OH} = -0.4$ mA | V _{CC} - 0.4 | | | V | | V _{OH3} | Output HIGH Voltage | $V_{CC} \le 2V$, $I_{OH} = -0.25$ mA | V _{CC} - 0.2 | | | V | | V _{OLS} | Reset Output LOW Voltage | I _{OL} = 1mA | | | 0.4 | V | # Capacitance $T_A = +25$ °C, f = 1MHz, $V_{CC} = 5$ V | | SYMBOL | TEST | MAX. | UNIT | CONDITIONS | |---|---------------------------------|---------------------------------------|------|------|-----------------------| | Ī | C _{OUT} ⁽²⁾ | Output Capacitance (SO, RESET, RESET) | 8 | pF | V _{OUT} = 0V | | | C _{IN} ⁽²⁾ | Input Capacitance (SCK, SI, CS, WP) | 6 | pF | V _{IN} = 0V | #### NOTES: - 1. V_{IL} min. and V_{IH} max. are for reference only and are not tested. - 2. This parameter is periodically sampled and not 100% tested. FN8128.3 June 1, 2006 **A.C. Test Conditions** | Input pulse levels | V _{CC} x 0.1 to V _{CC} x 0.9 | |-------------------------------|--| | Input rise and fall times | 10ns | | Input and output timing level | V _{CC} x0.5 | FIGURE 10. EQUIVALENT A.C. LOAD CIRCUIT AT 5V V_{CC} ### AC Electrical Specifications Serial Input Timing (Over operating conditions unless otherwise specified.) | | | 2.7- | ·5.5V | | |--------------------------------|------------------|------|-------|------| | SYMBOL | PARAMETER | MIN | MAX | UNIT | | f _{SCK} | Clock Frequency | 0 | 2 | MHz | | t _{CYC} | Cycle Time | 500 | | ns | | t _{LEAD} | CS Lead Time | 250 | | ns | | t _{LAG} | CS Lag Time | 250 | | ns | | t _{WH} | Clock HIGH Time | 200 | | ns | | t _{WL} | Clock LOW Time | 200 | | ns | | t _{SU} | Data Setup Time | 50 | | ns | | t _H | Data Hold Time | 50 | | ns | | t _{RI} ⁽³⁾ | Input Rise Time | | 100 | ns | | t _{FI} (3) | Input Fall Time | | 100 | ns | | t _{CS} | CS Deselect Time | 500 | | ns | | t _{WC} ⁽⁴⁾ | Write Cycle Time | | 10 | ms | FIGURE 11. SERIAL INPUT TIMING ### AC Electrical Specifications Serial Output Timing(Over operating conditions unless otherwise specified.) | | | 2.7-5.5V | | | |--------------------------------|-----------------------------|----------|-----|------| | SYMBOL | PARAMETER | MIN | MAX | UNIT | | f _{SCK} | Clock Frequency | 0 | 2 | MHz | | t _{DIS} | Output Disable Time | | 250 | ns | | t _V | Output Valid from Clock Low | | 200 | ns | | t _{HO} | Output Hold Time | 0 | | ns | | t _{RO} (3) | Output Rise Time | | 100 | ns | | t _{FO} ⁽³⁾ | Output Fall Time | | 100 | ns | #### NOTES: - 3. This parameter is periodically sampled and not 100% tested. - 4. t_{WC} is the time from the rising edge of $\overline{\text{CS}}$ after a valid write sequence has been sent to the end of the self-timed internal nonvolatile write cycle. **TABLE 3. SERIAL OUTPUT TIMING** TABLE 4. POWER-UP AND POWER-DOWN TIMING # **RESET** Output Timing | SYMBOL | PARAMETER | MIN | TYP | MAX | UNIT | |---------------------------------|--|------|------|------|------| | V_{TRIP} | Reset Trip Point Voltage, X5163-4.5A, X5163-4.5A | 4.5 | 4.63 | 4.75 | V | | | Reset Trip Point Voltage, X5163, X5165 | 4.25 | 4.38 | 4.5 | | | | Reset Trip Point Voltage, X5163-2.7A, X5165-2.7A | 2.85 | 2.92 | 3.0 | | | | Reset Trip Point Voltage, X5163-2.7, X5165-2.7 | 2.55 | 2.63 | 2.7 | | | V _{TH} | V _{TRIP} Hysteresis (HIGH to LOW vs. LOW to HIGH V _{TRIP} voltage) | | 20 | | mV | | t _{PURST} | Power-up Reset Time Out | 100 | 200 | 280 | ms | | t _{RPD} ⁽⁵⁾ | V _{CC} Detect to Reset/Output | | | 500 | ns | | t _F (5) | V _{CC} Fall Time | 100 | | | μs | | t _R ⁽⁵⁾ | V _{CC} Rise Time | 100 | | | μs | | V_{RVALID} | Reset Valid V _{CC} | 1 | | | V | ### NOTES: - 5. This parameter is periodically sampled and not 100% tested. - 6. Typical values not tested. # **RESET/RESET Output Timing** | SYMBOL | PARAMETER | MIN | TYP | MAX | UNIT | |------------------|---|-----------------|-------------------|-----------------|-----------------| | t _{WDO} | Watchdog Time Out Period,
WD1 = 1, WD0 = 0
WD1 = 0, WD0 = 1
WD1 = 0, WD0 = 0 | 100
450
1 | 200
600
1.4 | 300
800
2 | ms
ms
sec | | t _{CST} | CS Pulse Width to Reset the Watchdog | 400 | | | ns | | t _{RST} | Reset Time Out | 100 | 200 | 300 | ms | FIGURE 13. V_{TRIP} SET CONDITIONS FIGURE 14. V_{TRIP} RESET CONDITIONS ### X5163, X5165 # V_{TRIP} Programming Specifications: $V_{CC} = 1.7 - 5.5 V$; Temperature = 0°C to 70°C | PARAMETER | DESCRIPTION | MIN | MAX | UNIT | |---------------------------|--|------|------|------| | t _{VPS} | SCK V _{TRIP} Program Voltage Setup time | 1 | | μs | | t _{VPH} | SCK V _{TRIP} Program Voltage Hold time | 1 | | μs | | t _P | V _{TRIP} Program Pulse Width | 1 | | μs | | t _{TSU} | V _{TRIP} Level Setup time | 10 | | μs | | t _{THD} | V _{TRIP} Level Hold (stable) time | 10 | | ms | | t _{WC} | V _{TRIP} Write Cycle Time | | 10 | ms | | t _{RP} | V _{TRIP} Program Cycle Recovery Period (Between successive programming cycles) | 10 | | ms | | t _{VPO} | SCK V _{TRIP} Program Voltage Off time before next cycle | 0 | | ms | | V _P | Programming Voltage | 15 | 18 | V | | V _{TRAN} | V _{TRIP} Programed Voltage Range | 1.7 | 5.0 | V | | V _{ta1} | Initial V _{TRIP} Program Voltage accuracy (V _{CC} applied-V _{TRIP}) (Programmed at 25°C.) | -0.1 | +0.4 | V | | V _{ta2} | Subsequent V _{TRIP} Program Voltage accuracy [(V _{CC} applied-V _{ta1})-V _{TRIP}] (Programmed at 25°C.) | -25 | +25 | mV | | V _{tr} | V _{TRIP} Program Voltage repeatability (Successive program operations.) (Programmed at 25°C.) | -25 | +25 | mV | | V_{tv} | V _{TRIP} Program variation after programming (0-75°C). (Programmed at 25°C.) | -25 | +25 | mV | | V _{TRIP} program | ming parameters are periodically sampled and are not 100% tested. | | | | **FIGURE 15.** V_{CC} SUPPLY CURRENT VS. TEMPERATURE (I_{SB}) FIGURE 16. t_{WDO} VS. VOLTAGE/TEMPERATURE (WD1, 0 = 1, 1) FIGURE 17. V_{TRIP} vs. Temperature (programmed at 25°C) FIGURE 18. t_{WDO} VS. VOLTAGE/TEMPERATURE (WD1, 0 = 1, 0) FIGURE 19. t_{PURST} VS. TEMPERATURE FIGURE 20. t_{WDO} VS. VOLTAGE/TEMPERATURE (WD1, 0 0 = 0, 1) # Small Outline Package Family (SO) #### **MDP0027** ### SMALL OUTLINE PACKAGE FAMILY (SO) | SYMBOL | SO-8 | SO-14 | SO16
(0.150") | SO16 (0.300")
(SOL-16) | SO20
(SOL-20) | SO24
(SOL-24) | SO28
(SOL-28) | TOLERANCE | NOTES | |--------|-------|-------|------------------|---------------------------|------------------|------------------|------------------|-----------|-------| | Α | 0.068 | 0.068 | 0.068 | 0.104 | 0.104 | 0.104 | 0.104 | MAX | - | | A1 | 0.006 | 0.006 | 0.006 | 0.007 | 0.007 | 0.007 | 0.007 | ±0.003 | - | | A2 | 0.057 | 0.057 | 0.057 | 0.092 | 0.092 | 0.092 | 0.092 | ±0.002 | - | | b | 0.017 | 0.017 | 0.017 | 0.017 | 0.017 | 0.017 | 0.017 | ±0.003 | - | | С | 0.009 | 0.009 | 0.009 | 0.011 | 0.011 | 0.011 | 0.011 | ±0.001 | - | | D | 0.193 | 0.341 | 0.390 | 0.406 | 0.504 | 0.606 | 0.704 | ±0.004 | 1, 3 | | Е | 0.236 | 0.236 | 0.236 | 0.406 | 0.406 | 0.406 | 0.406 | ±0.008 | - | | E1 | 0.154 | 0.154 | 0.154 | 0.295 | 0.295 | 0.295 | 0.295 | ±0.004 | 2, 3 | | е | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | Basic | - | | L | 0.025 | 0.025 | 0.025 | 0.030 | 0.030 | 0.030 | 0.030 | ±0.009 | - | | L1 | 0.041 | 0.041 | 0.041 | 0.056 | 0.056 | 0.056 | 0.056 | Basic | - | | h | 0.013 | 0.013 | 0.013 | 0.020 | 0.020 | 0.020 | 0.020 | Reference | - | | N | 8 | 14 | 16 | 16 | 20 | 24 | 28 | Reference | - | NOTES: - 1. Plastic or metal protrusions of 0.006" maximum per side are not included. - 2. Plastic interlead protrusions of 0.010" maximum per side are not included. - 3. Dimensions "D" and "E1" are measured at Datum Plane "H". - 4. Dimensioning and tolerancing per ASME Y14.5M-1994 Rev. L 2/01 # Plastic Dual-In-Line Packages (PDIP) #### MDP0031 PLASTIC DUAL-IN-LINE PACKAGE | SYMBOL | PDIP8 | PDIP14 | PDIP16 | PDIP18 | PDIP20 | TOLERANCE | NOTES | |--------|-------|--------|--------|--------|--------|---------------|-------| | Α | 0.210 | 0.210 | 0.210 | 0.210 | 0.210 | MAX | | | A1 | 0.015 | 0.015 | 0.015 | 0.015 | 0.015 | MIN | | | A2 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 | ±0.005 | | | b | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | ±0.002 | | | b2 | 0.060 | 0.060 | 0.060 | 0.060 | 0.060 | +0.010/-0.015 | | | С | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | +0.004/-0.002 | | | D | 0.375 | 0.750 | 0.750 | 0.890 | 1.020 | ±0.010 | 1 | | E | 0.310 | 0.310 | 0.310 | 0.310 | 0.310 | +0.015/-0.010 | | | E1 | 0.250 | 0.250 | 0.250 | 0.250 | 0.250 | ±0.005 | 2 | | е | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | Basic | | | eA | 0.300 | 0.300 | 0.300 | 0.300 | 0.300 | Basic | | | eВ | 0.345 | 0.345 | 0.345 | 0.345 | 0.345 | ±0.025 | | | L | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | ±0.010 | | | N | 8 | 14 | 16 | 18 | 20 | Reference | | Rev. B 2/99 #### NOTES: - 1. Plastic or metal protrusions of 0.010" maximum per side are not included. - 2. Plastic interlead protrusions of 0.010" maximum per side are not included. - 3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane. - 4. Dimension eB is measured with the lead tips unconstrained. - 5. 8 and 16 lead packages have half end-leads as shown. intersil ### Thin Shrink Small Outline Plastic Packages (TSSOP) #### NOTES: - 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AC, Issue E. - 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. - 3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. - 4. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per - 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. - 6. "L" is the length of terminal for soldering to a substrate. - 7. "N" is the number of terminal positions. - 8. Terminal numbers are shown for reference only. - 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch). - 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees) M14.173 14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC **PACKAGE** | | INC | INCHES | | IETERS | | |-----------------|--------|--------|------|--------|-------------| | SYMBOL | MIN | MAX | MIN | MAX | NOTES | | Α | - | 0.047 | - | 1.20 | - | | A1 | 0.002 | 0.006 | 0.05 | 0.15 | - | | A2 | 0.031 | 0.041 | 0.80 | 1.05 | - | | b | 0.0075 | 0.0118 | 0.19 | 0.30 | 9 | | С | 0.0035 | 0.0079 | 0.09 | 0.20 | - | | D | 0.195 | 0.199 | 4.95 | 5.05 | 3 | | E1 | 0.169 | 0.177 | 4.30 | 4.50 | 4 | | е | 0.026 | BSC | 0.65 | - | | | Е | 0.246 | 0.256 | 6.25 | 6.50 | - | | L | 0.0177 | 0.0295 | 0.45 | 0.75 | 6 | | N | 1_ق | 4 | 1 | 4 | 7 | | α | 00 | 80 | 0o | 80 | - | | 为 ^{表。} | n.cv | | | | Rev. 2 4/06 | All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com