

Tuning Fork Crystal

The tuning fork type quartz crystal provides ultimate in size, performance and economic trade-offs. So it is used as a clock source in communication equipment, measuring instrument, microprocessor and other time management applications.

FEATURES

- · Miniature package
- · Low cost
- KHz frequency
- Tight tolerance

STANDARD ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	CONDITION	UNIT	MIN	TYPICAL	MAX
Frequency Range	Fo		KHz	- 4	32.768	
Frequency Tolerance	ΔF/F _O	at 25°C	ppm	3,35 /10	± 20	
Frequency Coefficient	K	ref to 25°C	ppm/(∆°C) ²	30		- 0.042
Operating Temperature Range	T _{OPR}		°C	- 10		+ 60
Storing Temperature Range	T _{STG}		°C	- 20		+ 70
Shunt Capacitance	Co		pF		0.85	2
Motional Capacitance	C ₁		fF	1	2	4
Load Capacitance	CL	11	pF		12.5	
Insulation Resistance	IR	100V _{DC}	MΩ	500		
Drive Level	DL		μW			1
Aging (first year)	Fa	at 25°C ± 3°C	ppm	- 5.0		+ 5.0
Equivalent Series Resistance(ESR)	Rs		ΚΩ			50

DIMENSIONS in inches [millimeters]

XT26T 32.768KHz MODEL FREQUENCY/KHz

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature (k). For example: What is stability at 45°C?

- 1) Change in Temperature (°C) = 45 25 = 20°C
- 2) Change in Frequency = 0.042ppm*(Δ °C)

= -0.042ppm*(20)²

= -16.8ppm(max)