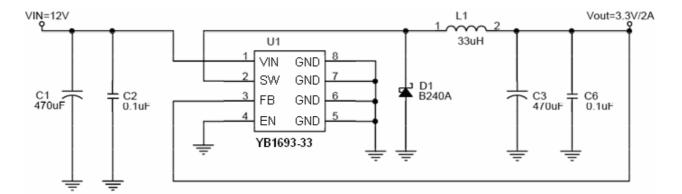


Description

YB1693 Series are step-down switching regulators with all required active functions. It is capable of driving 2A load with excellent line and load regulations. These devices are available in fixed output voltages of 3.3V, 5V and an adjustable output version.

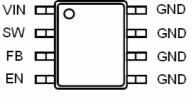

YB1693 series operates at a switching frequency of 150KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. It substantially not only reduces the area of board size but also the size of heat sink, and in some cases no heat sink is required. The ±4% tolerance on output voltage within specified input voltages and output load conditions is guaranteed. Also, the oscillator frequency accuracy is within ±10%. External shutdown is included. Featuring 70µA (typical) standby current. The output switch includes cycle-by-cycle as well as thermal current limiting, shutdown for full protection under fault conditions.

Features

- Output Voltage: 3.3V, 5V & Adjustable version
- Adjustable Output Voltage Range 1.23V~19.5V ±4%
- 150KHz ±15% fixed switching frequency
- Voltage Mode Non-synchronous PWM control
- Thermal Shutdown and Current Limit Protection
- ON/OFF Shutdown Control Input
- Soft-start (SS) Function
- Short Circuit Protect (SCP)
- Operating Voltage Can be up to 24V
- Output Load Current 2A
- Low Power Standby Mode

Applications

- Simple High-efficiency Step down Regulator
- On-Card Switching Regulators



Typical Application Circuit

Pin Configuration

Pin Description

Table 1

NAME	Description					
VIN	VIN This is the positive input supply for the IC switching regulator. A suitable in bypass capacitor must be presented at this pin to minimize voltage transition and to supply the switching currents needed by the regulator.					
SW	Internal switch. The voltage at this pin switches between (+Vcc – Vsat) and approximately – 0.5V, with a duty cycle of approximately Vout / Vcc. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be minimized.					
FB	Sense the regulated output voltage to complete the feedback loop.					
EN	Allows the switching regulator circuit to be shutdown using logic level signals thus dropping the total input supply current to approximately 100uA. Pulling this pin below a threshold voltage of approximately 1.3V turns the regulator on, and pulling this pin above 1.3V (up to a maximum of Vcc) shuts the regulator down. If this shutdown feature is not needed, the EN pin can be wired to the ground pin.					
GND	Circuit ground					

Ordering Information

Table 2

Order Number	Package Type Supplied as		Package Marking
YB1693-33	SOP-8	2500 units Tape & Reel	YB1693-33
YB1693-50	SOP-8	2500 units Tape & Reel	YB1693-50
YB1693-ADJ	SOP-8	2500 units Tape & Reel	YB1693-ADJ

YB1693 2A / 150KHz Buck DC-DC Converter

Absolute Maximum Ratings

Supply Voltage	+28V
Operating Voltage Range	+4.5V to +24V
SW, EN Pin Input Voltage	0.3V to Vcc
Feedback Pin Voltage	0.3V to Vcc
Device Dissignation	
Power Dissipation	Internally Limited
Output Voltage to Ground	•
	1V

Thermal Resistance

Junction to Case 6	0 _{JA} 70 °C / W
Junction to Ambient	$ heta_{JC}$

Note: Θ_{JA} is measured with the PCB copper area (need connect to GROUND pins) of approximately 1.5 in² (Multi-layer)

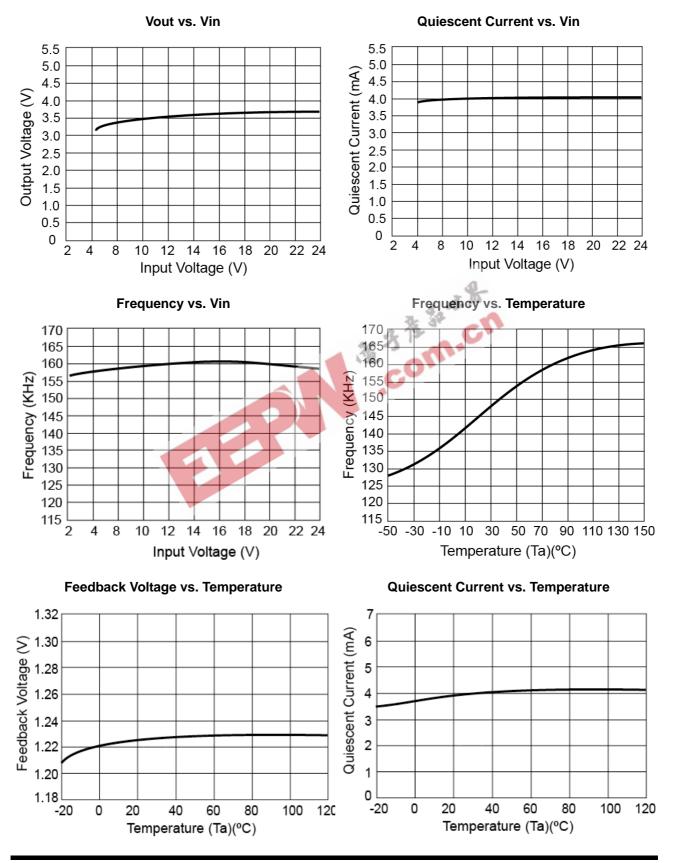
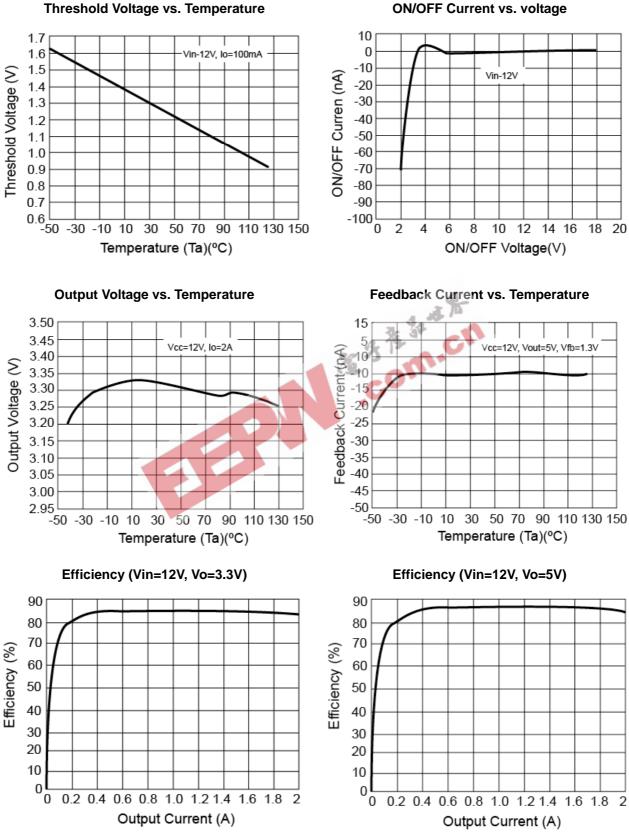
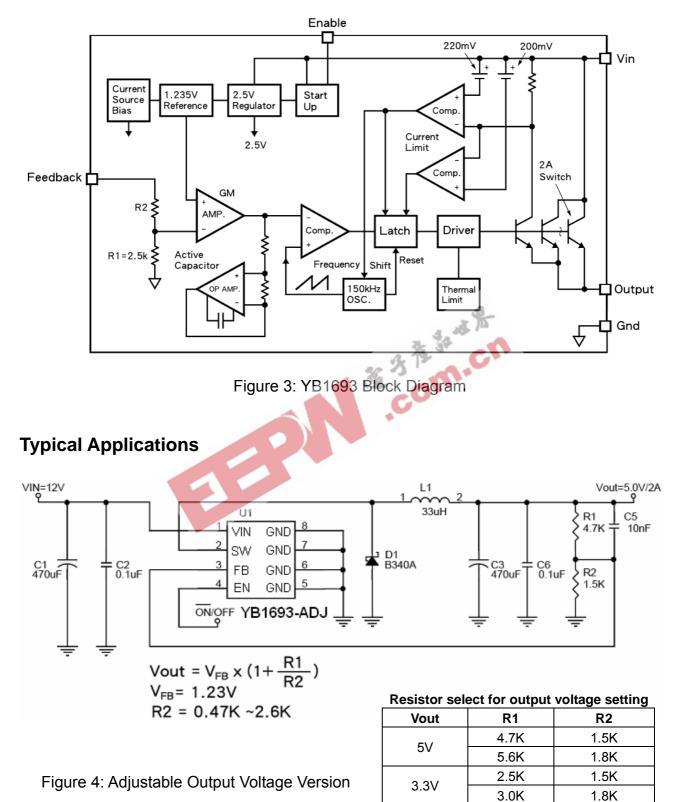

Electricitv Characteristics

Table 3 $\,$ (T_A =25°C, unless otherwise noted, V_{IN} =12V for 3.3V, 5V, Adj version. I_{LOAD} =0.2A)


Function Para	neter	Symbol	Test Conditions	Min	Тур	Max	Units
Output Feedback	ADJ	V _{FB}	4.5V≤ V _{IN} ≤24V 0.2A≤ I _{LOAD} ≤2A	1.193 1.180	1.23	1.267 1.280	v
Efficiency		η	V _{IN} =12V, I _{LOAD} =2A	76			%
Output Feedback			4.75V≤ V _{IN} ≤24V 0.2A≤ I _{LOAD} ≤2A	3.168 3.135	3.3	3.432 3.465	v
Efficiency		η	V _{IN} =12V, I _{LOAD} =2A 80				%
Output Feedback	5V	V _{FB}	$V_{IN} = 12V$, $10AD = 2AV$ $7V \le V_{IN} \le 24V$ $0.2A \le I_{LOAD} \le 2A$		5	5.20 5.25	v
Efficiency			V _{IN} =12V, I _{LOAD} =2A	84			%
Feedback Bias Current		I _{FB}	V _{FB} =1.3V (Adj version only)		-10	-100	nA
Oscillator Frequency		Fosc		127	150	173	KHz
Soft-Start Time		T _{ss}	Rising edge of EN on to I _{CL}		3		mS
Current Limit		I _{CL}	Pear Current, no outside circuit V _{FB} =0V force driver on 2.4				А
Oscillator Frequency of Short Circuit Protect		F _{SCP}	When current limit occurred and V_{FB} <0.5V, Ta = 25 °C		60		KHz
Saturation Voltage		V _{SAT}	I_{OUT} =2A, No outside circuit V _{FB} =0V force driver on		1.15	1.50	v
ON/OFF Pin Logic Input Threshold		VIL	Low (regulator ON)		1.3	0.6	v
Voltage		VIH	High (regulator OFF) 2.0				
ON/OFF Pin Logic Input C	urrent	ΙL	V _{LOGIC} =2.5V (OFF)		-0.1	-0.5	μA
		I _H	V _{LOGIC} =0.5V (ON)			-0.01	μ. ι
Maximum Duty Cycle (ON)		- DC	V_{FB} =0V force driver on	100 0			- %
Maximum Duty Cycle (OFF)			V _{FB} =12V force driver off				
Quiescent Current		lq	V _{FB} =12V force driver off		4	8	mA
Standby Quiescent Current		I _{STBY}	ON/OFF pin=5V		45	100	
			V _{IN} =24V	45		100	μA
SW Pin Leakage	SW pin = 0	I _{SWL}	No outside circuit, V _{FB} =12V force driver off			-200	μA
Current SW pin = -1		1	V _{IN} =24V		-5		mA

Electrical Characteristics Curve

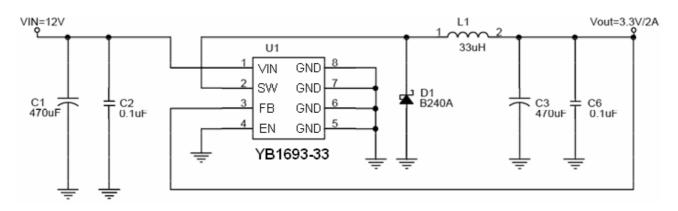


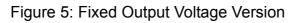
Threshold Voltage vs. Temperature

Functional Block

2.5V

1.8V


1.8K


0.82K

1.8K

1.8K

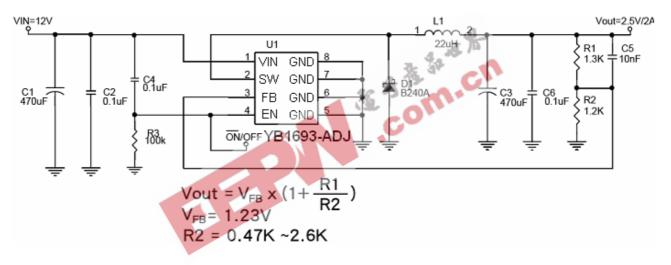


Figure 6: Adjustable Output Voltage Version with Delayed Startup

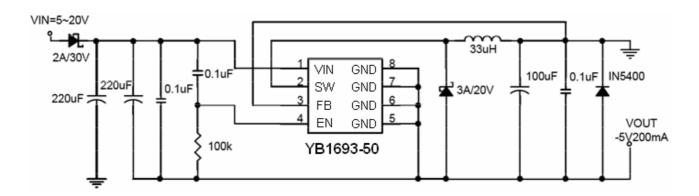
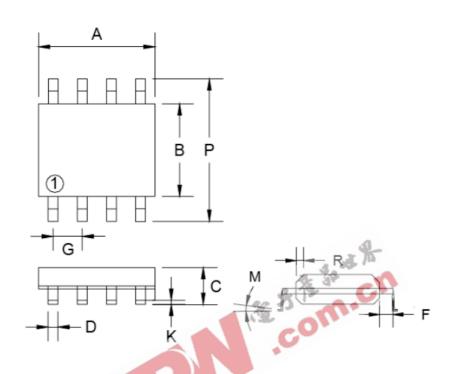



Figure 7: Inverting -5V Regulator with Delayed Startup

Package Description

SOP-8

SOP-8 DIMENSION							
DIM	MILLIM	ETERS	INCHES				
DIM	MIN	MAX	MIN	MAX.			
А	4.80	5.00	0.189	0.196			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27BSC		0.05BSC				
К	0.10	0.25	0.004	0.009			
М	0°	7°	0°	7°			
Р	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			