

### 3.3V, 180MHz, Multi-Output Zero Delay Buffer

### **Product Features**

- 180MHz Clock Support
- 150ps Maximum Output to Output Skew
- Supports PowerPC<sup>™</sup>, Intel and RISC Processors
- 11 Clock Outputs: Frequency Configurable
- Outputs Drive up to 22 Clock Lines
- LVCMOS/LVTTL Compatible Inputs
- Output Tri-state Control
- Spread Spectrum Compatible
- 3.3V Power Supply
- Pin Compatible with MPC952
- Industrial Temp. Range: -40°C to +85°C
- 32-Pin TQFP Package

### **Block Diagram**

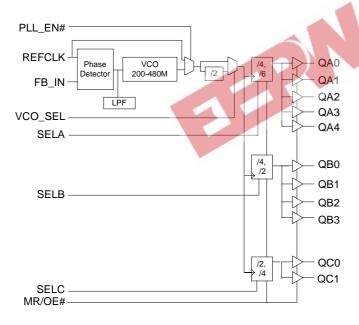
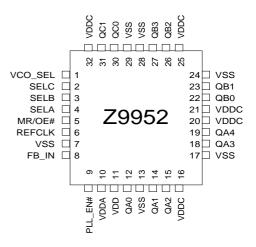




Figure 1

#### **Frequency Table**

| VCO_SEL | SEL (A:C) | QA(0:4) | QB(0:3) | QC (0,1) |  |
|---------|-----------|---------|---------|----------|--|
| 0       | 000       | VCO/4   | VCO/4   | VCO/2    |  |
| 0       | 001       | VCO/4   | VCO/4   | VCO/4    |  |
| 0       | 010       | VCO/4   | VCO/2   | VCO/2    |  |
| 0       | 011       | VCO/4   | VCO/2   | VCO/4    |  |
| 0       | 100       | VCO/6   | VCO/4   | VCO/2    |  |
| 0       | 101       | VCO/6   | VCO/4   | VCO/4    |  |
| 0       | 110       | VCO/6   | VCO/2   | VCO/2    |  |
| 0       | 111       | VCO/6   | VCO/2   | VCO/4    |  |
| 1       | 000       | VCO/8   | VCO/8   | VCO/4    |  |
| 1       | 001       | VCO/8   | VCO/8   | VCO/8    |  |
| 1       | 010       | VCO/8   | VCO/4   | VCO/4    |  |
| 1 26    | 011 🍊     | VCO/8   | VCO/4   | VCO/8    |  |
| 1 3     | 100       | VCO/12  | VCO/8   | VCO/4    |  |
| 26 1    | 101       | VCO/12  | VCO/8   | VCO/8    |  |
| 10      | 110       | VCO/12  | VCO/4   | VCO/4    |  |
| 1       | 111       | VCO/12  | VCO/4   | VCO/8    |  |
| Table 1 |           |         |         |          |  |

## Pin Configuration





## Z9952

### 3.3V, 180MHz, Multi-Output Zero Delay Buffer

### **Pin Description**

| PIN                      | NAME     | PWR  | I/O   | Description                                                                                                                                                                                                                    |  |  |
|--------------------------|----------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6                        | REFCLK   |      |       | External Test Clock Input.                                                                                                                                                                                                     |  |  |
| 12, 14, 15,<br>18, 19    | QA(0:4)  | VDDC | 0     | Clock Output. See Frequency Table.                                                                                                                                                                                             |  |  |
| 22, 23, 26, 27           | QB(0:3)  | VDDC | 0     | Clock Output. See Frequency Table.                                                                                                                                                                                             |  |  |
| 30, 31                   | QC(0,1)  | VDDC | 0     | Clock Outputs. See Frequency Table.                                                                                                                                                                                            |  |  |
| 8                        | FB_IN    |      |       | Feedback Clock Input. Connect to an output for normal operation.                                                                                                                                                               |  |  |
| 1                        | VCO_SEL  |      | I, PD | VCO Divider Select Input. When set high, the VCO output is divided by 2. When set low, the divider is bypassed. See Table 1                                                                                                    |  |  |
| 5                        | MR/OE#   |      | I, PD | Master Reset/Output Enable Input. When asserted high, resets all of the internal flip-flops and also disables all of the outputs. When pulled low, releases the internal flip-flops from reset and enables all of the outputs. |  |  |
| 9                        | PLL_EN#  |      | I     | PLL Enable Input. When asserted low, PLL is enabled. And when set high, PLL is bypassed.                                                                                                                                       |  |  |
| 2, 3, 4                  | SEL(C:A) |      | I, PD | Frequency Select Inputs. See Frequency Table.<br>If SEL_ = 0, then QA, QB divider = $\div$ 4, QC divider = $\div$ 2<br>If SEL_ = 1, then QA divider = $\div$ 6, QB divider = $\div$ 2, QC divider<br>= $\div$ 4                |  |  |
| 16, 20, 21,<br>25, 32    | VDDC     |      |       | 3.3V Power Supply for Output Clock Buffers.                                                                                                                                                                                    |  |  |
| 10                       | VDDA 🧹   |      |       | 3.3V Power Supply for PLL                                                                                                                                                                                                      |  |  |
| 11                       | VDD      |      |       | 3.3V Power Supply for Core Logic                                                                                                                                                                                               |  |  |
| 7, 13, 17, 24,<br>28, 29 | VSS      |      |       | Common Ground                                                                                                                                                                                                                  |  |  |

PD = Internal Pull-Down



### Maximum Ratings<sup>1</sup>

Maximum Input Voltage Relative to VSS:VSS - 0.3VMaximum Input Voltage Relative to VDD:VDD + 0.3VStorage Temperature:-65°C to + 150°COperating Temperature:-40°C to +85°CMaximum ESD protection2KVMaximum Power Supply:5.5VMaximum Input Current:±20mA

### 3.3V, 180MHz, Multi-Output Zero Delay Buffer

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

#### VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

| DC Parameters                                                  |        | A STA |            |     |       |                         |
|----------------------------------------------------------------|--------|-------|------------|-----|-------|-------------------------|
| Characteristic                                                 | Symbol | Min   | Тур        | Мах | Units | Conditions              |
| Input Low Voltage                                              | VIL    | VSS   |            | 0.8 | V     |                         |
| Input High Voltage                                             | VIH    | 2.0   | <u>rar</u> | VDD | V     |                         |
| Input Low Current (@VIL = VSS)                                 | IIL    |       |            | 10  | μA    | Note 2                  |
| Input High Current (@VIL =VDD)                                 | IIH    |       |            | 120 | μA    |                         |
| Output Low Voltage                                             | VOL    |       |            | 0.5 | V     | IOL = 20mA, Note 3      |
| Output High Voltage                                            | VOH    | 2.4   |            |     | V     | IOH = -20mA, Note 3     |
| Quiescent Supply Current                                       | IDDC   | -     | 15         | 20  | mA    | All VDDC, VDDA, and VDD |
| PLL Supply Current                                             | IDD    | -     | 15         | 20  | mA    | VDDA only               |
| Input Capacitance                                              | Cin    | -     | -          | 4   | pF    |                         |
| VDDA = VDD = VDDC = $3.3V \pm 5\%$ , TA = $-40$ °C to $+85$ °C |        |       |            |     |       |                         |

**Note 1:** The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

**Note 2:** Inputs have internal pull-down resistors that affect input current.

Note 3: Driving series or parallel terminated  $50\Omega$  (or  $50\Omega$  to VDD/2) transmission lines.



# Z9952

## 3.3V, 180MHz, Multi-Output Zero Delay Buffer

### **AC** Parameters<sup>1</sup>

| SYMBOL                                               | PARAMETER                                         | MIN               | TYP     | MAX               | UNITS | CONDITIONS            |
|------------------------------------------------------|---------------------------------------------------|-------------------|---------|-------------------|-------|-----------------------|
| Freq                                                 | Reference Input Frequency                         | Note 2            |         | Note 2            | MHz   |                       |
| Fvco                                                 | PLL VCO Lock Range                                | 200               |         | 480               | MHz   |                       |
| Tlock                                                | Maximum PLL lock Time                             |                   |         | 10                | ms    |                       |
| Tr / Tf                                              | Output Clocks Rise / Fall Time <sup>4,5</sup>     | 0.10              |         | 1.0               | ns    | 0.8V to 2.0V          |
| Fout                                                 | Maximum Output Frequency                          | -                 |         | 180               | MHz   | QB, QC = (÷2)         |
|                                                      |                                                   |                   |         | 120               |       | QA, QB, QC = (÷4)     |
|                                                      |                                                   |                   |         | 80                |       | QA = (÷6)             |
| FoutDC                                               | Output Duty Cycle <sup>4,5</sup>                  | TCYCLE/2 –<br>750 |         | TCYCLE/2 +<br>750 | ps    |                       |
| tpZL, tpZH                                           | Output enable time (all outputs)                  | 2                 |         | 10                | ns    |                       |
| tpLZ, tpHZ                                           | Output disable time (all outputs)                 | 2                 |         | 8                 | ns    |                       |
| TCCJ                                                 | Cycle to Cycle Jitter (peak to peak) <sup>5</sup> |                   | +/- 100 | Str. C.           | ps    |                       |
| Tpd                                                  | REFCLK to FB_IN Delay <sup>3,,4,5</sup>           | -200              | 23      | 200               | ps    |                       |
| TSKEW0                                               | Any Output to Any Output Skew <sup>4,5</sup>      |                   | - 0     | 150               | ps    | Same frequencies      |
|                                                      |                                                   |                   | 6       | 250               |       | Different frequencies |
| VDDA = VDD = VDDC = 3.3V +/- 5%, TA = -40°C to +85°C |                                                   |                   |         |                   |       |                       |

Note 1: Parameters are guaranteed by design and characterization. Not 100% tested in production. All parameters specified with loaded outputs.

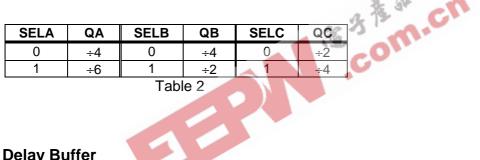
Note 2: Maximum and minimum input reference is limited by the VCO lock range.

Note 3: The Tpd window is specified for a 50MHz input reference clock. The window will enlarge/reduce proportionally from the minimum limits with an increase/decrease of the input reference clock period.

Note 4: Driving series or parallel terminator  $50\Omega$  (or  $50\Omega$  to VDD/2).

Note 5: Outputs loaded with 30pF each




## 3.3V, 180MHz, Multi-Output Zero Delay Buffer

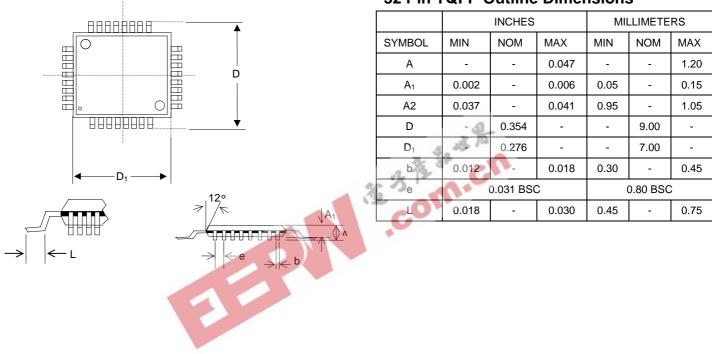
Z9952

### Description

The Z9952 has an integrated PLL that provides low skew and low jitter clock outputs for high performance microprocessors. The PLL is ensured stable operation given that the VCO is configured to run between 200 MHz to 480 MHz. This allows a wide range of output frequencies up to 180MHz. The Z9952 features three banks of individually configurable outputs: Bank A five outputs, Bank B four outputs, and Bank C two outputs. When MR/OE# input is set high, all the outputs are tri-stated. The Z9952 outputs are LVCMOS compatible and can drive two series terminated 50Ω transmission lines. With this capability the Z9952 has an effective fanout of 1:22. Low output-to-output skews make the Z9952 ideal for clock distribution in nested clock trees in the most demanding of synchronous systems.

The phase detector compares the input reference clock to the external feedback input. For normal operation, the external feedback input, FB IN, is connected to one of the outputs. The internal VCO is running at multiples of the input reference clock set by SEL(A:C) select inputs, see Table 2. The VCO\_SEL input allows for the choice of two VCO ranges to optimize PLL stability and jitter performance, see Table 1. The VCO frequency is then divided down to provide the required output frequencies. The use of even dividers ensures that the output duty cycle remains at 50%.




### **Zero Delay Buffer**

When used as a zero delay buffer the Z9952 will likely be in a nested clock tree application. Any of the eleven outputs can be used as the feedback to the PLL. By using one of the outputs as a feedback to the PLL the propagation delay through the device is eliminated. The PLL works to align the output edge with the input reference edge thus producing a near zero delay. The reference frequency affects the static phase offset of the PLL and thus the relative delay between the inputs and outputs. Because the static phase offset is a function of the reference clock the Tpd of the Z9952 is a function of the configuration used.



3.3V, 180MHz, Multi-Output Zero Delay Buffer

### **Package Drawing and Dimensions**



### 32 Pin TQFP Outline Dimensions



### 3.3V, 180MHz, Multi-Output Zero Delay Buffer

### **Ordering Information**

| Part Number               | Package Type                                                     | Production Flow                                                       |
|---------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
| Z9952AA                   | 32 PIN TQFP                                                      | Industrial, -40°C to +85°C                                            |
|                           | g part number is formed b<br>s shown below.                      | y a combination of device number, device revision, package style, and |
| <u>Marking</u> : Example: | Cypress<br>Z9952AA<br>Date Code, Lot #                           |                                                                       |
| <b>Z9952AA</b>            | — Package<br>A = TQFP — <u>Revision</u> IMI <u>Device Number</u> | ·法·法·法·法·<br>· com·cn                                                 |



### 3.3V, 180MHz, Multi-Output Zero Delay Buffer

### Notice

Cypress Semiconductor Corporation reserves the right to make changes to its products in order to improve design, performance or reliability. Cypress Semiconductor Corporation assumes no responsibility for the use of its products in life supporting and medical applications where the failure or malfunction of the product could cause failure of the life supporting and medical systems. Products are not authorized for use in such applications unless a written approval is requested by the manufacturer and an approval is given in writing Cypress Semiconductor Corporation for the use of its products in the life supporting and medical applications.





### 3.3V, 180MHz, Multi-Output Zero Delay Buffer

| Document Title: Z9952 3.3V, 180 MHz Multi-Output Zero Delay Buffer<br>Document Number: 38-07085 |        |          |     |                                                          |  |
|-------------------------------------------------------------------------------------------------|--------|----------|-----|----------------------------------------------------------|--|
| Rev.ECNIssueOrig. ofDescription of ChangeNo.DateChange                                          |        |          |     |                                                          |  |
| **                                                                                              | 107121 | 06/05/01 | IKA | Convert from IMI to Cypress                              |  |
| *A                                                                                              | 108064 | 07/03/01 | NDP | Changed Commercial to Industrial                         |  |
| *B                                                                                              | 122770 | 12/22/02 | RBI | Add power up requirements to maximum ratings information |  |

